Aframomum melegueta of the family Zingiberaceae is a spice used in West Africa for the purpose of alleviating stomachache, diarrhea and hypertension. The aim of this study is to evaluate the effects of Aframomum melegueta on the liver of adult wistar rats. Twenty wistar rats weighing between 180-215kg were used. They were grouped into four groups of five animals. Group A served as the control and received 0.35ml of distilled water, the experimental groups B, C & D received 0.55ml, 0.65ml and 0.75ml of aqueous extract of Aframomum melegueta respectively for twenty eight days. Twenty four hours after the last administration, the animals were weighed, anaesthesized using chloroform inhalation method and dissected. Liver tissues were removed, weighed and trimmed down to a size of 3mm x 3mm thick and fixed in 10% formalin for histological studies. There were body weight gain in the experimental groups compared with the control. The organ (liver) weight of the experimental groups were statistically similar with the control. There was no apparent toxicity assessed by histological examination.

Keywords: Aframomum melegueta, Liver weight, Body weight, Hepatoprotective, Wistar rats.

INTRODUCTION
Aframomum melegueta of the family Zingiberaceae is a spice in the ginger family with the common name “Alligator pepper”. The spice is used in West Africa for the purpose of alleviating stomachache and diarrhea as well as hypertension with some limited reports on it being used for tuberculosis and a remedy for snakebites and scorpion stings. The seeds are used for culinary reasons (due to the pungency of the seeds, it is common used as seasoning on food products). The seeds also tend to have general anti-microbial properties similar to many spices and has some molluscidal and repellent properties as well. It is one of many pungent herbs said to aid in sexuality and aphrodisiac.
Aframomum melegueta appears to have a polyphenolic content of 2.28 ± 0.02mg/g (0.2% dry weight) with 0.55mg/g (0.06%) flavinoids which is comparatively high to other Africa spices tested although low relative to other herbs. This study is aimed at investigating the effects of Aframomum melegueta on the liver of adult wistar rats.

MATERIALS AND METHODS
Breeding of Animals
Twenty healthy adult wistar rats were procured from the animal house of Anatomy Department University of Calabar, Cross River State and bred in the animal house of Nnamdi Azikiwe University, Nnewi Campus. They were allowed for seven days acclimatization under normal temperature before their weights were taken. They were fed ad libitum with water and guinea feed pallets from Agro feed mill Nigeria Ltd.
Drug Preparation
Aframomum melegueta were obtained from Nkwo market in Nnewi Anambra State, Nigeria and grinded into powder with a grinding machine. 200mg/1kg body weight were dissolved in 5mls of distilled water and administered to the animals.

Experimental Protocol
The twenty healthy adult wistar rats were allocated into four groups (A, B, C & D) of five animals each. Group A served as the control and received 0.35ml of distilled water, the experimental groups (B, C & D) received 0.55ml, 0.65ml and 0.75ml of aqueous extract of Aframomum melegueta respectively for twenty eight days. The control and experimental groups were anaesthetized using chloroform inhalation method and dissected, liver tissues were removed, weighed, trimmed down and fixed in 10% formaldehyde for histological studies.

Tissue Processing
The tissues were transferred into an automatic processor where they went through a process of fixation, dehydration, clearing, infiltration, embedding, sectioning and staining. Fixation was carried out in 10% formaldehyde. The tissues were washed over night in running tap water after four hours in 10% formaldehyde. Dehydration of the fixed tissues were carried out in different percentages of alcohol 50%, 70% and 90% absolute. The tissues were then cleared in xylene and embedded in paraffin wax. Serial sections of 5micron thick are obtained using a rotatory microtome. The tissue sections were deparaffined hydrazed and stained using the routine haematoxylin and eosin method. The stained sections were then examined under the light microscope.

RESULTS
Morphometric Analysis of Body Weights

<table>
<thead>
<tr>
<th>GROUP</th>
<th>INITIAL BODY WEIGHT</th>
<th>FINAL BODY WEIGHT</th>
<th>WEIGHT CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>190.20 ± 2.30</td>
<td>215.30 ± 4.20</td>
<td>25.10 ± 3.70</td>
</tr>
<tr>
<td>B</td>
<td>192.20 ± 3.60</td>
<td>219.40 ± 3.50</td>
<td>27.20 ± 4.10</td>
</tr>
<tr>
<td>C</td>
<td>193.40 ± 4.10</td>
<td>220.70 ± 3.20</td>
<td>27.30 ± 3.90</td>
</tr>
<tr>
<td>D</td>
<td>194.10 ± 2.70</td>
<td>221.60 ± 2.40</td>
<td>27.50 ± 3.40</td>
</tr>
</tbody>
</table>

F-RATIO: 64.240, PROB OF SIG: <0.001
F-RATIO: 40.180, PROB OF SIG: <0.001
F-RATIO: 19.155, PROB OF SIG: <0.001

The final body weight for the experimental groups increased significantly (P < 0.001) relative to the control.

Morphometric Analysis of Organ (liver) Weight

<table>
<thead>
<tr>
<th>GROUP</th>
<th>LIVER WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.10 ± 0.250</td>
</tr>
<tr>
<td>B</td>
<td>5.12 ± 0.310</td>
</tr>
<tr>
<td>C</td>
<td>5.13 ± 0.290</td>
</tr>
<tr>
<td>D</td>
<td>5.14 ± 0.340</td>
</tr>
</tbody>
</table>

F-RATIO: 50.40, PROB OF SIG: <0.001

The relative weights of the experimental groups increased significantly (P < 0.001) with the control A.
Histopathological Findings

Fig 1. Micrograph 1, (control), shows normal histological structure of the liver, stained by H & E technique, x 200.

Fig 2. Micrograph 2, Group B, (treated with 0.55ml of Aframomum melegueta aqueous extract) showing non distortion of the hepatocytes, stained by H & E technique, x 200.
Fig 3. Micrograph 3, Group C, (treated with 0.65ml of *Aframomum melegueta* aqueous extract) shows normal morphology of the structure of the liver, stained by H & E technique, x 200.

Fig 4. Micrograph 4, Group D, (treated with 0.75ml of *Aframomum melegueta* aqueous extract), showing normal histological structure of the liver, stained by H & E technique, x 200.
DISCUSSION

Aframomum melegueta extract has been shown to moderately inhibited acetylcholinesterase activity with IC$_{50}$ of 373.33µg/ml12. In the pancreas of rats treated with sodium nitroprussida (SNP) in vivo, *Aframomum melegueta* was noted to have concentration dependent protection of pancreatic β-cells thought to be through anti-oxidative properties12. In rats given a large amount of alcohol (4.8g/kg) for 15 days, co-ingestion of *Aframomum melegueta* (100-200mg/kg aqueous extract) noted that the higher dose was able to prevent an increase in liver weight and fully abolish lipid peroxidation as assessed by MDA while preserving both GSH and GST; hepatic superoxide dismutase (SOD) was not significantly influenced by *Aframomum melegueta* despite it being reduced with ethanol13. In the present study, the body weight of the experimental groups increased significantly with the control. The organ (liver) weight of the experimental groups were similar with the control. Histological appearance of the liver cells showed non destruction of the liver cells in the experimental groups compared with the control.

CONCLUSION

From the present study, the aqueous extract of *Aframomum melegueta* has no toxic effects to the liver cells in low and high doses thus have protective properties.

REFERENCES

9. Ukek DA et al Behavioural responses of the maize weevil, sitophilus zeamais to host (stored grain) and non host plant volatiles. Pest Management Sci. 2010; 67:1303-08.