INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY. BIOLOGY AND CHEMISTRY

Research Article

Antimicrobial properties of the Ethyl acetate extract of the stem bark of Nauclea latifolia

Chinedu Fredrick Anowi¹, Nnabuife Chinedu Cardinal², Chibeze Ike³ and Emmanuel Ezeokafor⁴

Department of Pharmacognosy and Traditional medicine, Faculty of Pharmaceutical Scinces, Nnamdi Azikiwe University, Awka.

²Department of Pharmaceutical Chemistry, Madonna University, Elele, Rivers State, Nigeria. ³Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Elele, Rivers State, Nigeria.

⁴Department of Physiology, Faculty of Basic Medical Sciences, Madonna University, Elele, Rivers State, Nigeria.

ABSTRACT

Nauclea latifolia had been reported to have antimicrobial properties. The people of Ogidi in Idemili North Local Government Area of Anambra State, Nigeria, used it to treat wound infections. This study is therefore aimed at determining this claim ie antimicrobial effect of this plant using the stem bark of Nauclea latifolia which will also serve as a criteria to recommend the Ethnopharmacological uses of the plant. The stem bark was dried, powdered and extracted by cold maceration with Ethyl acetate for 24hours. This was concentrated using rotary evaporator. Phytochemical evaluation revealed the presence of alkaloids, tannins, sterols, glycosides and saponin in varying degrees. The antimicrobial activities (sensitivity test) of the crude extracts and the standards (augmentin; an antibacterial agent and ketoconazole; an antifungal agent) were evaluated against Gram positive and Gram negative bacteria and fungi using agar diffusion method at the concentration of 100mg/ml for extracts and 50µg/ml for standards. The same method was used to evaluate the minimum inhibitory concentration. Results show that Ethyl acetate extract of the stem bark exhibited activity against E.coli, S. dysentariae, S. aereus, B. subtilis and A. niger, with minimum inhibitory concentration (MIC) ranging from 2.4mg/ml- 20.89mg/ml. On Pseudomonas aeruginosa, the ethyl acetate extract of stem bark also show significant effectiveness when compared to the standard. The percent susceptibility test indicated that the effect of ethyl acetate extract of stem bark on S. dysentariae is very high (85.8%). From the results obtained, it could therefore be concluded that the stem bark of Nauclea latifolia possess broad spectrum antimicrobial activities. Nauclea latifolia may be useful in the formulation of antimicrobial agent that could be used for the treatment of microbial infections of different origins.

Keywords: Nauclea latifolia, Ketoconazole, minimum bactericidal activity.

INTRODUCTION

Nauclea latifolia Smith (family: Rubiaceae) is a straggling, evergreen, multi-stemmed shrub or small tree native to tropical Africa and Asia. It grows up to an altitude of 200 m. It is widespread in the humid tropical rainforest zone or in savannah woodlands of West and Central Africa. It grows rarely over 20ft high, bole crooked; or a larger tree over 100ft high and 8ft girth, in closed forest. The plant has rough bark, leaves are 7 by 4-5 inches and are glabrous obovate. Flower head is up to 2mm in

diameter, sweet scented and sought by bees. Three other related species Nauclea pobeguini, N. diderichii, and N. vanderguchtii are forest trees. N. Diderichii is planted in Omo forest reserve, Nigeria. In the folk medicine, the species N. diderichii and N. orientalis are used in the same way as N. latifolia. Nauclea latifolia has an open canopy and terminal spherical head lined cymes of white flowers. The flowers are joined with their calyces. The fruit is syncarp, up to 3 inches in diameter. The tree is flowering from April to June.

The fruits are ripening from July to September. Baboons eat them and disperse the seeds. Livestock eat shoots and leaves. The fruits are edible too.

PLANT TAXONOMY

Family: RUBIACEAE Genus: Nauclea Species: latifolia

Accepted name: Nauclea latifolia Sm. Synonyms: Sarcocephalus latifolius (Sm.)

E.A.Bruce

Common names: English; African peach, Pin

cushion tree, Guinea peach.

Igbo; Ubulinu.

French; Scille maritime, oignon marine.

Hausa; Tafashiya, tafiyaigia.

TRADITIONAL USES OF Nauclea latifolia

Nearly all plant parts are useful in treatment of diseases. Infusions and decoctions of the stem bark and leaves of Nauclea latifolia are used for the treatment of stomach pain, constipation, fever, and diarrhea. In kano (Nigeria) the plant is used as a chewing stick and as a remedy against stomach ache and tuberculosis (Deeni & Hussain 1991). In Ivory Coast infusions and decoctions from stems and roots of N. latifolia are used against malaria by traditional healers (Benoil-vical, Valentin, cournal et al. 1998). In Kinshasa, extracts and preparations together with other plants are applied against diarrhea (Tona, Kambu, Ngimbi et al. 2000). Abbiw (1990) stated that root infusion is used in Sudan for the treatment of gonorrhoea and also the roots and leaves are used in Ghana for treating sores. In Nigerian local medicine, the fruits are sometimes used in the treatment of piles and dysentery. Because of its reported antimalarial activity, the plant has been known as 'Africa cinchona' or 'Africa quinine' (Abbiw 1990). Gidado, Ameh, & Atawodi (2004), demonstrated that aqueous extract of the leaves of N. latifolia possess hypoglycaemic activity in alloxan-induced diabetic rats. The plant is also used in hypertension (Akabue and Mittal, 1982), gastrointestinal tract disorders (Maduabunyi,1995), sleeping sickness (Kerharo, 1974), and prolong menstrual flow (Elujoba, 1995).

MATERIALS AND METHODS MATERIALS

***STANDARD DRUGS**

- Amoxicillin/ potassium clavulanate (Augmentin^(R)).
- ➤ Ketoconazole; (Korlyns).

*****MICROORGANISMS

➤ Gram positive bacteria; Staphylococcus aereus and Bacillus subtilis

Gram negative bacteria; Escherichia coli, Pseudomonas aeruginosa and Shigella dysentariae.

ISSN: 2277 - 4688

Fungi; Candida albicans and Aspergillus niger.

*REAGENTS/ CHEMICALS

Ethyl acetate, Dragendorff's reagent, Hager's reagent, Concentrated sulphuric acid (H_2SO_4) (BDH Chemicals), concentrated hydrochloric acid, ferric chloride hexahydrate, copper sulphate pentahydrate ,sodium tartarate, sodium hydroxide,.

***BIOLOGICAL MEDIA**

- ➤ Nutrient Agar (Fluka)
- ➤ Nutrient Broth (Fluka)
- ➤ Saubaraud dextrose agar (Biochemika)

***EQUIPMENT**

Electrical weighing balance (OHAUS Model 2610), Laboratory Incubator (Sanfa-Moodel No DNP-9022A), wooden mortar and pestle, laboratory oven (Surgienfield Instrument, England), digital water bath (Sanfa-Model No DK420), autoclave (Health team instrument, England), Refrigerator (LG), Bunsen burner.

* APPARATUS/GLASS WARES

Petri-dishes, Pasteur pipettes, swab sticks, calibrated syringes, measuring cylinders, beakers, test tubes, reagents bottles, stirrer, inoculating loop, cork borer.

Methods

Plant Collection and Identification and Preparation

The fresh stem bark of Nauclea Latifolia was collected from a bush at Ogidi, Idemili North Local Govt. Area Anambra State, Nigeria in November 2010. The plant was identified by Dr Ezugwu of Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Nigeria,Nsukka. The stem bark was dried under shade for seven days. The dried materials were powdered using locally made mortar and pestle, weighed in an electronic weighing balance and stored in an air-tight container.

Extraction Procedure

500gm of the ground powder of the stem bark of *Nauclea latifolia* was macerated in 1500ml (1.5L) of Ethyl acetate (AnalaR grade) respectively, in about 3L capacity glass ware and was made airtight and left for two days with intermittent shaking. The mixture was filtered using Whatman's filter paper No. 1 to obtain a solution devoid of solids. The ethyl acetate extract was evaporated using rotary evaporator to get dried concentrate.

Phytochemical Screening

Qualitative assay for the presence of secondary plant metabolites were carried out on methanolic extract of the stem bark *of Nauclea latifolia* using the standard procedures (Harborne 1991), (Trease and Evans, 1989).

Tests for Alkaloids

Being bases, a 100mg of the crude extract extracts was boiled for about 2 minutes with 5ml of 2M HCl on a steam bath. The mixtures were filtered and to 1ml of filterate was added 2 drops of Dragendorf's reagent (bismuth potassium iodine solution), (brick red colouration test). To another 1ml of each filtrate, 2 drops of Hagers (saturated solution of picric acid) reagent was also added. The test tubes were observed for coloured precipitates.

Tests for Tannins

Test for Saponins

Frothing test; 5ml of the extract was diluted with 10ml of distilled water; the solutions were then vigorously shaken and observed on standing to obtain persistent of foam.

Test for Sterols

Liebermann Burchard's reagent was added to the sample and was observed for bluish green colour reaction.

Tests for Glycosides

Preparation of Fehling's solution;
Copper sulphate
pentahydrate......3.46g.
Sodium potassium tatarate....17.3g.
Sodium hydroxide.......6.0g.
Water to100ml.

5ml of the extract was mixed separately with 2ml of Fehling's solution (freshly prepared) and then boiled in water bath for 15 minutes. The sample was observed for a brick red precipitate which indicates the presence of reducing sugars and is also an indirect determinant of presence of glycosides.

A 3ml of dilute sulphuric acid was added to the mixture (above) and was boiled for another 15min. and cooled. The sample was observed for an increase in the amount of precipitate previously formed. Theoretically, more precipitate indirectly confirms the presence of glycosides since the reducing sugars are obtained from the hydrolysis of glycosides present.

ISSN: 2277 - 4688

Antimicrobial Activity Screening Preparation of Inoculums

The bacteria used were Shigella dysenteriae, Pseudomonas aeruginosa, Escherichia coli, acillus subtilis and Staphylococcus aureus. The fungi used were Aspergillus niger and Candida albicans. All microorganisms were isolated from clinical from the specimens obtained Microbiology department of Madonna University Elele, Rivers State Nigeria. The test organisms were separately prepared by subculturing the pure isolates in nutrient agar and incubated at 37°C for 24 hours for bacteria and in sabauraud agar for 72 hours for fungi. Two loopfuls of the microbial culture were collected using sterilized (heat fixed) inoculating loop into 10mls nutrient broth contained in sterilized universal bottles and then incubated at 37° C overnight for subsequent use. 0.2ml of the overnight cultures of different organisms were then diluted with 20ml nutrient broth to give 1 in 100 dilution equivalent to 1x 10⁶cfu/ml which were then used for the study.

Sterilisation of Working Materials

Petri dishes and pipettes, were washed with detergents, rinsed with distilled water sand wrapped with aluminium foil before they were sterilised in hot air oven at a temperature of about 100^{0} C for about one hour. The laboratory benches were cleaned with 70% alcohol before and after each experiment.

The tests carried out were;

- a. Sensitivity test.
- b. Minimum inhibitory concentration (MIC).
- c. Minimum bactericidal concentration (MBC)

Preparation of the Culture Media

Culture media are commercially available in the dehydrated form. The nutrient agar medium was prepared by suspending 28g of the nutrient agar in one litre of distilled water. The suspension was then dissolved completely. It was then sterilised by autoclaving at 121°C for 15 minutes.

Sensitivity Test

The method used here is agar diffusion method. 20ml of nutrient agar was melted in water bath at 100°C for thirty minutes after which they were stabilised at 45°C for 15 minutes. Each molten agar inoculated with 0.2ml (containing 10°CFU) of a

24-hour culture of the test organisms. The dishes were rotated to homogenize with the microorganism. The seeded agar were poured into separate sterile petri-dishes and allowed to set. Using a sterile cork borer, four cups were bored in the set agar. The plates were turned upside down, divided into four and cups were labelled appropriately. The extracts were reconstituted by dissolving 1gm of each in 1ml of water. Two cups in each petri dish were filled with 100mg equivalent of the ethyl acetate extract from the stem bark of Nauclea latifolia. The remaining cups were filled with 25µg/ml equivalent of standard drug. The extracts from each part of the plant were tested against five bacteria (Escherichiaa Coli, Pseudomonas auriginosa, Neisserria gonorrhoea, Staphylococcus aureus, Bacillus subtilis and Shigella dysenteriae). $25\mu g/ml$ amoxicillin/potassium clavulanate solution was used as comparative standard drug for the bacteria. Sabouraud dextrose agar was used as the culture medium for the fungi and the above procedure repeated. The extract was tested against two fungi (Aspergillus niger and Candida albicans). The comparative drug used was ketoconazole $(25\mu g/ml)$.

The plates were allowed to stand for one hour to allow adequate diffusion of the extracts and the drugs. The plates seeded with bacteria were then incubated at 37°C for 24 hours and other plates seeded with fungi were incubated at 28°C for 5days. The zones of inhibition were measured in millimetre (mm) and the average found and recorded (Collin et al. 1995).

Determination of Minimum Inhibitory Concentration (MIC)

The back of the agar plate was divided into 5 parts. 0.2 ml of a standard suspension of each microorganism was placed into 2 separate petri dishes for each microorganism. The prepared sterile molten agar was poured into each of the plates and mixed by rotating each plate to homogenise the microorganism. The agar was allowed to set on a flat surface for 10min.

A cup was made up on the agar using a sterile cork borer of 9mm in diameter at the center of each section. The cups were labelled to indicate the concentration of the extract to be introduced into each cup. After boring the cups the extract was introduced into the corresponding cups and allowed for diffusion for about 15 minutes and incubated at 37°C for 24 hours. The fungi dishes were incubated at 28°C for four days. The zones of inhibition were measured and the mean recorded. The inhibition distance was determined by subtracting the diameter of the cup (9mm) from the zone of inhibition. A graph of the square of the corresponding mean inhibition distance was plotted against the log concentration of the extracts and of the drugs. A straight line of best fit was drawn and extrapolated to the log concentration axis. The resultant intercept was recorded as the log minimum inhibitory concentration (MIC) against that organism. The antilog of this is the minimum inhibitory concentration.

Statistical Analysis

The results was expressed as means \pm standard error of mean (S.E.M). Percentage susceptibility of the extract was evaluated using the standards as 100%. The significance difference between the mean values were measured using analysis of variance (ANOVA) at P<0.05.

SECONDARY METABOLITES PRESENT IN THE EXTRACTS

 $Secondary\ plant\underline{\ metabolites\ found\ in\ ethyl\ acetate\ extract\ of\ {\it Nauclea\ latifolia}.}$

Secondary	Stem bark
Metabolites	EAE
Alkaloids	++
Glycoside	++
Saponins	++
Sterols	+
Tanins	++

KEY:

 $EAE = ethyl \ acetate \ extract$

++ = presence of the compound.

_ = compound not detected.

+ = trace amount of compound.

Sensitivity Test Result

The results showed that the clinical isolates apart from A.niger were all susceptible to ethyl acetate extract of the stem bark. The extract showed reduced activity *P.aeruginosa*.

ISSN: 2277 - 4688

Table 2: sensitivity results of the extracts and standards

 Mean inhibition zone diameter							
Extracts	P.A	E.C	S.A	S.D	B.S	C.A A.N	
EAF/SB	12.0±1.2	18.2 ± 0.9	16.5±0.5	16.3±0.7	13.6±0.4	15.7±0.7 -	
AUG.	15.0±1.0	28.3±1.1	25.4 ± 0.4	19.0±1.2	27.2±0.8	-	
KET.	-	-	-	-	-	27.1±0.05 18.0±0.8	

 $KEY:P.A = \textit{Pseudomonas aeruginosa}. \quad \textit{E.C.} = \textit{Escherichia coli}. \quad \textit{S. A.} = \textit{Staphylococcus aureus} \\ \textit{S.D.} = \textit{Shigella dysenteriae} \quad \textit{B. S.} = \textit{Bacillus subtilis}. \quad \textit{C. A.} = \textit{Candida albicans} \qquad \textit{A.N.} = \textit{Aspergillus niger.} \\ \textit{AUG.} = \textit{augmentin}^{R} \quad \textit{KET.} = \textit{ketoconazole. SB.} = \textit{stem bark.} \quad \textit{EAF.} = \textit{ethyl acetate fraction.} - \textit{no activity} \\ \end{cases}$

Table 3: Result of percent susceptibility of the extract and standards

Microorganisms	ethyl aceta	te	standards	
		extract		
	SB	AUG	KET.	
P. aeruginosa	80	100	-	
E. coli	64	100	-	
S. aereus	64.9	100	-	
S. dysentariae	85.8	100	-	
B. subtilis	50	100	-	
C. albicans	57.9	-	100	
A. niger	-	-	100	

 $KEY: \quad - \ No \ activity \quad AUG. = augmentin^R \quad KET. \ = ketoconazole. \quad SB. = stem \ bark.$

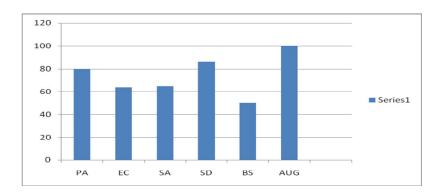


Fig. 1.1:

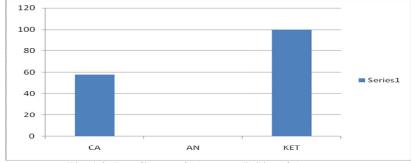


Fig. 1.2: Bar Charts of % susceptibility of the extract

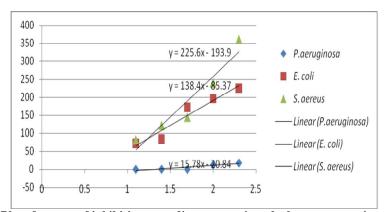

Key; PA=Pseudomonas aeruginosa, EC= Escherichia coli, SA=S. aereus SD= S.dysentariae, BC= B.subtilis, CA= C.albicans, KET= Ketoconazole AUG= Augmentin

Table 4: Result of mean inhibition zone diameter (mm) of the ethyl acetate extract of stem bark of Nauclea latifolia at different concentrations (mg/ml)

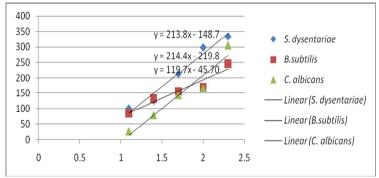
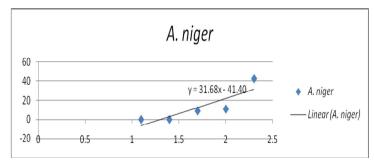

Organisms			mean inhibition zone diameter				
Concentration (mg/ml)							
	200	100	50	25	12.5		
P. aeruginosa	4.2	3.5	0	0	(
E. coli	15.0	14	13.1	9.2	8.5		
S. aereus	19.0	15.5	12	11	9		
S. dysentariae	18.3	17.3	14.6	11.2	10		
B. subtilis	15.7	13.0	12.5	11.5	9.2		
C. albicans	17.5	12.9	12.0	8.9	5.2		
A. niger	6.5	3.3	3.0	0	0		

Table 5: Result of mean inhibition zone diameter squared and the Log concentrations of the ethyl acetate extract of stem bark of *Nauclea latifolia*

Organ	nisms	Mean Inh	ibition Zone D	iameter squared			
Log concentration (200mg/ml-12.5mg/ml)							
	2.30103	2.00000	1.69897	1.39794	1.09691		
P. aeruginos	a 17.64	12.25	0	0	0		
E. coli	225	196	171.61	84.64	72.25		
S. aereus	361	240.25	144	121	81		
S. dysentariae	334.89	299.29	213.16	125.44	100		
B. subtilis	246.49	169	156.25	132.25	84.64		
C. albicans	306.25	166.41	144	79.21	27.04		
A. niger	42.25	10.89	9.0	0	0		



Plot of square of inhibition zone diameter against the log concentration of ethyl acetate extract of stem bark of *Nauclea latifolia*

Plot of square of inhibition zone diameter against

the log concentration of ethyl acetate

Plot of square of inhibition zone diameter against the log concentration of ethyl acetate extract of stem bark of *Nauclea latifolia*

Table 6: Results of log conc. (mg/ml) of the extract of stem bark of *Nauclea latifolia* and the standards (µg/ml)

Test E	AE/SB	AUG.	KET.
Organisms. [-(mg/ml)-]	[(μ	g/ml)]
P. aeruginosa	1.32	0.697	-
E. coli	0.616	0.260	-
S. aereus	0.859	0.160	-
S. dysentariae	0.695	0.186	-
B. subtilis	0.380	0.380	-
C. albicans	1.025	-	0.087
A. niger	1.306	-	0.722

 $Aug. = augmentin^R$ ket. = ketoconazole. SB. = stem bark.

EAE. = ethyl acetate fraction. – no activity

The log of concentrations were extrapolated from the x-axis of the graph and then converted to antilogarithm which gave the minimum inhibitory concentration (MIC) of each of the clinical isolates in mg/ml for the extracts and µg/ml for the standards

Results of MIC (antilog.) of the extract and standards.

Test	EAE/SB	AUG.	KET.	
Organisms. [(N	Mg/ml)]	[(µg	/ml)]	
P. aeruginosa	20.89	4.98	-	
E. coli	4.13	1.82	-	
S. aereus	7.23	1.45	-	
S. dysentariae	4.96	1.53	-	
B. subtilis	2.40	2.40	-	
C. albicans	10.59	-	1.22	
A. niger	20.27	-	5.23	

RESULTS AND DISCUSSION

The present study was carried out to evaluate the antimicrobial activity of ethyl acetate extract of stem bark of *Nauclea latifolia*, and their phytochemical constituents.

The phytochemical analysis revealed the presence of tannins, saponins, alkaloids, sterols and glycosides in varying degrees in all the extracts of both stem bark. These secondary metabolites have been reported to exhibit varied biochemical and pharmacological effects in animals and microorganisms when ingested (Trease and Evans 2008). The high content of saponins and tannins could be the basis for its antimicrobial activity which has been associated with antimicrobial effects. Tannins act by coagulating the cell wall proteins (Trease and Evans, 1983), while saponin

causes the lysis of the bacterial cells (Robinson, 1975). Thus, this may therefore explain the demonstration of antimicrobial activity by ethyl acetate extract of stem bark of *Nauclea latifolia*.

De and Ifeoma (2002), reported that the phytochemical components also offer plants themselves protection against infection by pathogenic microorganisms.

These results obtained in the phytochemical screening correlate with the work done by Hotellier *et al.*, (1979) and Morah (1995) who reported that Nauclea latifolia contains terpenes, alkaloids, glycoalkaloids and tannins.

The emerging antimicrobial resistance to diseases have compromised chemotherapy of patients suffering from severe infectious diseases especially in Nigeria. These infectious diseases include

urinary tract infection and severe diarrhoea caused by Escherichia coli, Salmonella typhi and Shigella dysentariae. Wound infections, otitis media, genital tract infections, periodontal diseases osteomyelitis in children are mainly caused by Streptococcus spp. and B. subtilis (Walker and Whittlesea, 2007). The antimicrobial evaluation results of ethylacetate extract of the stem bark of Nauclea latifolia on the selected clinical isolates: Gram-positive bacteria (Staphylococcus aereus, Bacillus subtilis,), Gram-negative (Shigella dysentariae, Escherichia Pseudomonas aeruginosa) and fungi (Aspergillus niger, Candida albicans) revealed the antimicrobial efficacy of stem bark of this plant. The observed inhibitory properties of the extract against these clinical bacterial and fungi isolates using agar diffusion method indicated that Nauclea latifolia possesses a broad spectrum of antimicrobial Comparing with the standards activity. susceptibility were used % antimicrobial coli 70%, S. aereus 70%, S. Escherichia dysentariae 90%, B. subtilis 50% and C. Albicans 58% were most susceptible. Pseudomonas aeruginosa 80% is susceptible and A. niger is not. There was no significant difference (p>0.05) when the effect of the extract on P. Aeruginosa and S. dysentariae was compared against augmentin. However, a very significant difference (p<0.01) was seen on any other microorganism.

CONCLUSION

The present study shows *Nauclea latifolia* as a medicinal plant with lot of potential as antimicrobial agent. The observed antimicrobial effects in the present study would appear to justify the ethnomedicinal use of the plant as chemotherapy for infectious diseases.

RECOMMENDATIONS

In view of the present findings, it seems important to recommend for further bioassay targeted technique studies on the crude extracts. That is purification and identification of the constituents with antimicrobial properties as well as its effect on more pathogenic organisms are recommended as this would produce more specific and effective results

It would also make a great impact in the health care system and the populace if this work on in vitro studies is extended to in vivo determination of antimicrobial effects using animals. This is suggested because the extracts which were inactive in vitro may have properties similar to prodrugs which are administered in an inactive form, but their metabolites could be active in vivo (Lino and Deogracious, 2006).

Finally, Health foundations should increase their efforts on the plant research as it is a potential source of broad spectrum antimicrobial agent that

could be helpful in reducing the emergence spread of antimicrobial resistance.

REFERENCES

- Abbiw K D, (1990). Useful Plants of Ghana, West Africa; uses of wild and cultivated plants, Intermediate Technology Publication, London pp 98-212.
- Aguiyi J C (2006), Antifungal Agents. In Akubue PI (ed.), Textbook of Pharmacology. Africana First Publishers Ltd Onitsha, pp 496-500.
- 3. Akabue P, Mittal H C (1982). Clinical Evaluation of a Traditional Herbal Practice in Nigeria: A Preliminary Rep. J. Ethnopharmacol. 6(3):355-359
- Akubue P I (2006). Textbook of Pharmacology, 1st Ed. Africa First Publishers Ltd Onitsha.
- Banso A and Adeyemo S O, (2007). Comparative studies of antimicrobial properties of *Cardiospermum gradiflorum* and *Cardiospermum halicacabum*. Nigerian journal of Health and Biomedical science. Pp 31-34.
- Benoit-Vical F,Valentin A, Cournac V et al. (1998) In vitro antiplasmodial activity of stem and root extracts of *Nauclea latifolia* S.M. (Rubiaceae) J Ethnopharmacol 61: 173-8
- Collins C H, Patricia N L, Lyme M And Grange J M (1995), Microbial Methods 7th
- Butler-Sworth Heinnemann.David A L, Robin R, Alasttair D B, David H And Steward F(2008). Muir's Textbook of Pathology, 14th Ed. Power Publisher, India pp 508-509
- 9. De N and Ifeoma E (2002), Antimicrobial effects of components of the bark extract of neeru (Azadirachta indica A. Juss. Tech. Dev. (8):23-28.
- Deeni Y Y, Hussain H S N (1991) Screening for antimicrobial activity and for alkaloids of
- 11. Nauclea latifolia J Ethnopharmacol 35: 91-6
- 12. Elujoba A A A (1995). Female Infertility in the Hands of Traditional Birth Attendants in South-West Nigeria. Fitoterapia 66(3):239 248.
- 13. Gidado A, Ameh D A, Atawodi S E, (2005). Effect of Nauclea latifolia leaves aqueous extracts on blood glucose levels of normal and alloxan-induced diabetic rats. African J. Biotech. 4(1): 91-93.

- 14. Harborne J A, (1991). Phytochemical Methods, A guide to common techniques of plant analysis
- Hotellier F, Delaveau P, Pousset J L (1979). Alkaloids and Glycoalkaloids from Leaves of *Nauclea latifolia*. Planta Medica. 35:242 – 250
- 16. Madubunyi I I, (1995). Anti- Hepatotoxic and Trypanocidal Activities of the Ethanolic Extract of *Nauclea latifolia* Root Bark. J. Herbs Spices Med Plants. 3 (2):23 53.
- 17. Morah F N I (1995). Naucledal and Epinaucledal from an Antiviral Preparation from *Nauclea latifolia*. Global J. Pure Appl. Sci. 1(1 2):59 62.
- 18. Ohadoma S C (2008). The Phamacology Made Easy. 1st Ed. Publishers by Reverend print, Nigeria. 367-370, 402
- 19. Rang H P, Dale M M, Ritter J M, Flower RJ, (2007). Rang and Dale's Pharmacology, 6th Ed. USA, Eisevier pp:47
- Trease G E. and Evans W C, (1983).
 Pharmacognosy. 11th Ed. Balliere and Tindall East Bourne, London. 243-551
- 21. Trease G E and Evans W C, (2008). Pharmacognosy. 5th Ed. Elsevier publishers, India.
- 22. World Health Organisation (2002). Epidemiology of Nosocomial Infections. In:
- Prevention of Hospital Acquired Infections. A Practical Guide, 2nd eds(Ducel G, Fabry J, Nicolle L, eds Malta. pp. 4-16.