INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY

Research Article

Synthesis, Characterization and Antimicrobial Activity of 3-{4-[3-(substitutedphenyl)prop-2-enoyl]phenyl}-6-iodo-2-thioxo-2,3-dihydroquinazolin-4-one

derivatives : I

N. K. Prajapati¹, G.R. Jani².

¹ M.N.College, Visnagar, Mehsana Dt, Gujarat, India.

² Shri U.P. Arts & Smt. M.G. Panchal Science College, Pilvai, Gujarat, India.

ABSTRACT

A new series of Chalcones derivatives (2a-2e) have been synthesized by reacting 3-(4-acetyl phenyl)-6-iodo-2-thioxo-2,3-dihydro quinazolin-4-one(1) with different aromatic aldehydes(R_1 - R_5) in presence of sodium hydroxide and ethanol at room temperature. After synthesis compounds were characterized by chemical as well as instrumental methods. Like elemental, IR. This compound screened for their anti bacterial and anti fungal activities.

Keywords: Ethanol, Quinazolin-4-one, IR, Anti bacterial and Antifungal activities.

INTRODUCTION

Chalcones have been reported to possess various biological activities such as antifungal,¹⁻ ²antiviral,³anticancer⁴ and anti HIV⁵agents.They have also been reported as good chelating agents.⁶

Chalcones are Product of Condensation of simple or substituted aromatic with simple or substituted acetophenones in presence of alkali. In recent years there has been an increasing interest in the chemistry of quinazolin-4-one derivatives because of their biological significance. Many of them show antifungal, antibacterial, anticancer. antiinflammatory, anticonvulsant, immunotropic, hypolipidemic, antitumor, antiulcer and analgesic ⁷⁻¹³ Literature survey reveals mention of the above compounds with antimicrobial properties and hence more and more derivatives are worth tested for the possible medicinal applications. So we have decided to synthesis Chalcones derivatives.

MATERIALS AND METHODS

All reagents were of analytical reagent grade and were used without further purification. All the product were synthesized and characterized by their spectral analysis, Chemicals NaOH, HCl, ethanol and various aldehyde were purchased from S.D.fine chemicals (india).Melting points were taken in open capillary tube. IR spectra (KBr) were recorded on Shimadzu-PerkinElmer F.T I.R. Spectrophotmeter Gx.

EXPERIMENTAL

Preparation of 3-{4-[3-(substitutedphenyl)prop-2enoyl]phenyl}-6-iodo-2-thioxo-2,3dihydroquinazolin-4-one(2a-2e).

To the solution of 3-(4-acetylphenyl)-6-iodo-2thioxo-2,3-dihydro quinazolin-4-one in absolute ethanol, substituted benzaldehyde and 2% NaOH were added and refluxed for 10 hours. After refluxing the reaction mixture was concentrated, cooled, filtered and neutralized with dil. HCl. The solid residue thus obtained was crystallized by absolute ethanol.

RESULTS AND DISCUSSION

The Chalcones derivatives obtained are shown in the reaction scheme-I. All the synthesized compounds

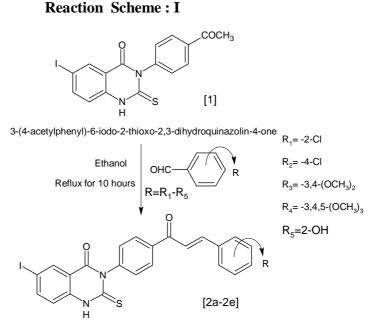
were characterized by Melting point and elemental analysis (C,H,N) confirmed by table:1. The observed bands in the IR spectra for 2a - 2e are shown in table:2. Analysis indicate by the symbols of the elements is very close to the theoretical values. The Minimal inhibition concentrations of the standard drugs' for Antibacterial and Antifungal are as per table 3 and 4. Antimicrobial activities of $3-\{4-[3-(substitutedphenyl)prop-2-enoyl]phenyl\}-6-iodo-2-thioxo-2,3-dihydroquinazolin-4-one are in table: 5.$

ANTIMICROBIALACTIVITY Antibacterial activity

Antibacterial activities of all the newly synthesized compounds were studied against gram-positive bacteria staphylococcus aureus (MTCC96), streptococcus pyogenes (MTCC442) and gramnegative bacteria escherichia coli (MTCC443), pseudomonas aeruginosa (MTCC1688) using the broth dilution method. The test compounds compared with standard drugs gentamycin, ampicillin, chloramphenicol, ciprofloxacin and norfloxacin.

Antifungal activity

All the newly synthesized compounds were also screened for their antifungal activity against candida albicans (MTCC227), aspergillus niger (MTCC282) and aspergillus clavatus (MTCC1323) using the broth dilution method. The test compounds compared with standard drugs Greseofulvin and Nystatin.


CONCLUSION

Antibacterial activity:

From screening results, substituted derivatives 2a, 2b and 2d (500 gm/ml) possesses very good activity against E. coli (MTCC 443) and P.aeruginosa (MTCC 1688), and 2e (500 gm/ml) possesses very good activity against S. aureus (MTCC 96)and S. pyogenes (MTCC 442)compared with standard drugs. The modrate antibacterial activity was shown by the compounds 2c and 2e (250 gm/ml) against E. coli (MTCC 443) and P.aeruginosa (MTCC 1688), and 2c and 2d (200 gm/ml) modrate antibacterial activity against S. aureus (MTCC 96) and S. pyogenes (MTCC 442)compared with standard drugs.. While Compound 2a and 2b poor activity against against S. aureus (MTCC 96)and S. pyogenes (MTCC 442) compared with all standard drugs gentamycin, ampicillin, chloramphenicol, ciprofloxacin and norfloxacin.

Antifungal activity:

From screening results, substituted derivatives 2a, 2b, 2c and 2e possesses very good activity and 2d was shown poor activity against *Aspergillus Niger* (*MTCC 282*) and *Aspergillus Clavatus* (*MTCC 1323*), *The derivatives of 2c and 2d* possesses very good activity against C.albicans (*MTCC 227*) 2a, 2b and 2e compound moderate activity against C.albicans (*MTCC 227*) with the standard drugs nystatin, greseofulvin.

3-{4-[3-(substitutedphenyl)prop-2-enoyl]phenyl}-6-iodo-2-thioxo-2,3-dihydroquinazolin-4-one

No.	Sub	R	Molecular	Mol.Wt.	Yield	M.P.	Cart	oon(%)	Hydrogen(%)		Nitrogen(%)	
	No.		Formula	(gm)	(%)	\ C	Found	required	Found	required	Found	required
1	2a	- 2-Cl	C ₂₃ H ₁₄ CIIN ₂ O ₂ S	544.80	62	184	50.65	50.71	2.55	2.59	5.11	5.14
2	2b	- 4-Cl	C ₂₃ H ₁₄ CIIN ₂ O ₂ S	544.80	63	162	50.35	50.71	2.56	2.59	5.10	5.14
3	2c	- 3,4- (OCH ₃) ₂	C ₂₅ H ₁₉ IN ₂ O ₄ S	570.40	69	156	52.23	52.64	3.33	3.36	4.88	4.91
4	2d	- 3,4,5- (OCH ₃) ₃	C ₂₆ H ₂₁ IN ₂ O ₅ S	600.42	75	210	52.00	52.01	3.50	3.53	4.61	4.67
5	2e	- 2- OH	C ₂₃ H ₁₅ IN ₂ O ₃ S	526.35	65	180	52.30	52.48	2.84	2.87	5.28	5.32

 Table 1

 Physical constant of 3-{4-[3-(substitutedphenyl)prop-2-enoyl]phenyl}

 -6-iodo-2-thioxo-2,3-dihydroquinazolin-4-one

Table 2

N	lo.	Sub. No.	>NH-	-OH	=С-Н	=С-Н	>C=O	>C=C<	-CH ₃	C-N	C-O-C	>C=S	C-Cl	C-I
						(Stretch)	(Stretch)	Aromatic	(Bend)					
	1	2a	3460		3040		1700	1590		1290		1220	690	530
	2	2b	3460		3030		1680	1600		1290		1240	700	520
	3	2c	3360		3050	3050	1700	1580	1400	1300	1150	1240		520
	4	2d	3440		3020	3070	1690	1600	1410	1280	1170	1220		520
	5	2e	3410	3330	3020		1690	1590		1300		1230		520

 Table : 3

 The Antibacterial Standard Drugs' Minimal Inhibition Concentration

DRUGS	E.COLI	P.AERUGI NOSA	S .AUREUS	S.PYOGENUS
-	MTCC 443	MTCC 1688	MTCC 96	MTCC 442
(MICROGRAMME/ML)				
GENTAMYCIN	0.05	1	0.25	0.5
AMPICILLIN	100		250	100
CHLORAMPHENICOL	50	50	50	50
CIPROFLOXACIN	25	25	50	50
NORFLOXACIN	10	10	10	10

 Table : 4

 The Antifungal Standard Drugs' Minimal Inhibition Concentration

DRUG	C .ALBIC ANS	A .NIGER	A .CLAVATUS
-	MTCC 227	MTC C 282	MTCC 1323
(MICROGRAMME/ML)			
NYSTATI N	100	100	100
GRESEOFULVIN	500	100	100

	-6-lodo-2-tnioxo-2,5-dinydroquinazolin-4-one										
Sr. No.	Comp. No.		ANTIBACTERIAL ACTIVITY Minimal Inhibition Concentration (µgm/				ANTIFUNGAL ACTIVITY M inimal Inhibition Concentration (µgm/ml)				
			Gram +Ve bacteria		Gram -Ve bacteria		F ung us				
			S. a ureus	S. pyogenus	E. coli	P. aer ugin osa	C.albicans	A .niger	A.clavatus		
			M T C C 96	MTCC 442	MTCC 443	MTCC 1688	MTCC 227	MTCC 282	MTCC 1323		
1	2a	- 2-Cl	100	100	500	500	250	1000	1000		
2	2b	- 4-Cl	100	100	500	500	500	1000	1000		
3	2c	- 3,4-(OCH ₃) ₂	200	125	250	250	1000	1000	1000		
4	2d	- 3,4,5-(OCH3)3	200	200	500	500	1000	250	250		
5	2e	- 2- OH	500	500	250	250	500	500	1000		

 Table : 5

 Antimicrobial activity of 3-{4-[3-(substitutedphenyl)prop-2-enoyl]phenyl}

 -6-iodo-2-thioxo-2,3-dihydroquinazolin-4-one

REFERENCES

- 1. Mizabuchis, Satoy, Agri. Boil Chem.1984; 48:2771.
- 2. Bhakunin DS, Chaturvedi RJ, Nat prod. 1984; 47:585.
- 3. Simmonds MS, Blaney WM, Monuche FD, Marini Bettollo, j. Chem. Ecol. 1996; 16: 365.
- 4. Schewnolt M, Kittstein W, Murk F, Fuerslenberger, Cancer Lett. 1984; 25: 177.
- 5. Chung YJ, Kim DH, Choi KY, Kim BH, Korean J Med Chem 1995; 5(2): 141.
- 6. Syam Sunder K, Proc. Indian Acad. Sciences 1964; 4: 241.
- Nawrocka W., Zimecki M., Arch. Pharm. 1997; 330: 399.
- Kurogi Y., Inoue Y., Tsutsumi K., Nakamura S., Nagao K., Yoshitsugu H., Tsuda Y., J.Med. Chem. 1996; 39: 143.
- 9. Hamel E., Lin CM, Plowman J., Wang HK, Lee KH, Paull KD, Bioorg. Pharm. 1996; 51: 53.
- 10. Terashima K, Shimamura H, Kawase A, Tanaka Y, Tanimura T, Kamisaki T, Ishizuka Y, M. Chem. Pharm. Bull. 1995; 43: 2021.
- Raffa D., Dailone G., Maggio B., Sehillaci D., Plescia F., Arch. Pharm. 1999; 332: 317.
- 12. Baek DJ, Park YK, Heo HI, Lee MH, Yang ZY, Chio MH, Bioorg. Med. Chem.Lett. 1998; 8: 3287.

 Griffin RJ, Srinivasan S, Bowman K, Calvert AH, Curtin NJ, Newell DR, Pemberton LC, Golding BT, J. Med. Chem. 1998; 41: 5256.