ABSTRACT
The synthesis of 2-aryl-4,5-diphenylimidazole via the condensation of various aromatic aldehydes, benzil and ammonium acetate in the presence of acetic acid was carried out in 86-95% yields by heating at 140 °C. This method provides several advantages such as simple operation, short reaction time, and high yields.

Keywords 2-Aryl-4,5-diphenylimidazole, Synthesis, Catalysis, Heating, Condensation.

INTRODUCTION
Triarylimidazole derivatives have many biological activities, such as herbicidal1, fungicidal2, and anti-inflammatory activities3. Besides, they are also used in photography as photosensitive compounds4. Due to these properties, the synthesis of imidazole derivatives is still an interesting area in organic synthesis.

Over the years, numerous methods for the synthesis of 2-aryl-4,5-diphenylimidazole have been reported. Synthesis of these compounds via three-component condensation of 1,2-diketone, aromatic aldehyde and ammonium acetate can be catalyzed by various catalysts, such as HOAc5, glyoxylic acid6, oxalic acid7, ionic liquids8, Ytterbium triflate9, Ytterbium perfluorooctanesulfonate10, InCl3/3H2O11, silica sulfuric acid12, cellulose sulfuric acid13 and ceric (IV) ammonium nitrate14. The three-component condensation of 1,2-diketone, aromatic aldehyde and ammonium acetate can also be completed under microwave5d, 6, 13, 15 or ultrasound irradiation14. Among them, the use of HOAc as the solvent or catalyst is early approach, in which the reaction is carried out under reflux and N2 atmosphere. The condensation requires long reaction times (1.5–10 h), has low yields, and suffers from tedious and time-consuming workup5d.

Herein, we wish to report an efficient method for synthesis of 2-aryl-4,5-diphenylimidazole via one-pot condensation of benzil, various aromatic aldehydes and ammonium acetate in the presence of acetic acid by heating at 140 °C (Scheme 1).
Scheme 1: Synthesis of 2-aryl-4,5-diphenylimidazole

MATERIALS AND METHODS
Benzil was prepared according to literature. Melting points were uncorrected. The 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE III 600 spectrometer using TMS as internal standard and DMSO-d$_6$ as solvent. MS were determined on an Agilent Technologies 6310 Lon Trap LC/MS.

General procedure: A 5 mL round-bottomed flask was charged with a mixture of benzil (1, 1 mmol), aromatic aldehydes (2, 1 mmol), ammonium acetate (3, 3 mmol) and HOAc (0.5 mL). The mixture was heated at 140 °C in oil bath for the appropriate time as indicated in Table 2. The reaction was followed by TLC. After completion of the reaction, the reaction mixture was diluted with water (2 mL). The solid imidazole products were filtered, washed with water and then recrystallized from ethanol to afford pure imidazole.

The authenticity of the products was established by their MS, 1H NMR, 13C NMR and their melting points compared with that reported in literatures.

2,4,5-Triphenyl-1H-imidazole (4a), white solid; m.p.276-277 °C; m/z (ESI): 297 [M+H$^+$]; 1H NMR δ: 7.32-8.10 (m, 15H, Ph-H), 12.10 (s, 1H, N-H); 13C NMR δ: 125.7, 127.0, 127.6, 128.3, 128.6, 128.7, 128.9, 129.1, 129.2, 130.8, 131.5, 135.6, 137.6, 145.8.

2-(2-Nitro-phenyl)-4,5-diphenyl-1H-imidazole (4b), brown solid; m.p.231-232 °C; m/z (ESI): 342 [M+H$^+$]; 1H NMR δ: 7.25-8.01 (m, 14H, Ph-H), 12.98 (s, 1H, N-H); 13C NMR δ: 123.9, 124.5, 127.2, 127.5, 128.5, 128.7, 129.1, 129.2, 130.0, 130.3, 131.0, 132.6, 135.2, 138.0, 141.4, 148.8.

2-(3-Nitro-phenyl)-4,5-diphenyl-1H-imidazole (4c), yellow solid; m.p.318 °C; m/z (ESI): 342 [M+H$^+$]; 1H NMR δ: 7.26-8.96 (m, 14H, Ph-H), 13.11 (s, 1H, N-H); 13C NMR δ: 127.3, 127.6, 128.6, 128.7, 128.9, 129.2, 129.6, 130.9, 131.1, 131.7, 132.2, 135.2, 138.2, 143.7, 148.8.

2-(4-Nitro-phenyl)-4,5-diphenyl-1H-imidazole (4d), brown solid; m.p.236-238 °C; m/z (ESI): 342 [M+H$^+$]; 1H NMR δ: 7.27-8.37 (m, 14H, Ph-H), 13.15 (s, 1H, N-H); 13C NMR δ: 124.7, 126.2, 127.4, 127.6, 128.8, 129.0, 129.2, 130.4, 135.1 136.5, 138.9, 143.7, 147.1.

2-(2,4-Dichloro-phenyl)-4,5-diphenyl-1H-imidazole (4e), white solid; m.p.176-177 °C; m/z (ESI): 365 [M+H$^+$]; 1H NMR δ: 7.24-7.85 (m, 13H, Ph-H), 12.73 (s, 1H, N-H); 13C NMR δ: 127.1, 127.6, 127.9, 128.3, 128.7, 129.2, 129.3, 130.2, 131.2, 132.9, 133.1, 133.4, 135.4, 137.6, 142.7.

2-(3,4-Dichloro-phenyl)-4,5-diphenyl-1H-imidazole (4f), light yellow solid; m.p.255-256 °C; m/z (ESI): 385 [M+H$^+$]; 1H NMR δ: 7.24-7.55 (m, 13H, Ph-H), 12.89 (s, 1H, N-H); 13C NMR δ: 101.7, 106.0, 109.0, 119.8, 125.0, 127.0, 127.1, 128.0, 128.2, 128.3, 128.7, 129.0, 130.4, 130.7, 130.8, 131.0, 131.6, 134.8, 137.6, 143.1.

2-(3,4-Methylenedioxy-phenyl)-4,5-diphenyl-1H-imidazole (4g), white solid; m.p.252-253 °C; m/z (ESI): 341 [M+H$^+$]; 1H NMR δ: 6.09 (s, 2H, CH$_2$), 7.03-7.64 (m, 13H, Ph-H), 12.52 (s, 1H, N-H); 13C NMR δ: 101.7, 106.0, 109.0, 119.8, 125.0, 127.0, 127.5, 128.2, 128.6, 128.8, 129.1, 131.5, 135.6, 137.3, 145.7, 147.9, 148.1.

2-(2-Hydroxy-3-methoxyl-phenyl)-4,5-diphenyl-1H-imidazole (4h), white solid; m.p.191-192 °C; m/z (ESI): 343 [M+H$^+$]; 1H NMR δ: 3.82 (s, 3H, CH$_3$), 6.87-7.67 (m, 13H, Ph-H), 8.31 (s, 1H, O-H), 13.05 (s, 1H, N-H); 13C NMR δ: 55.7, 112.8, 116.7, 118.4, 126.7, 127.0, 127.2, 128.3, 128.5, 128.8, 130.2, 133.6, 134.0, 146.0, 146.9, 148.4.

2-(4-Hydroxy-3-methoxyl-phenyl)-4,5-diphenyl-1H-imidazole (4i), white solid; m.p.255-256 °C; m/z
(ESI): 343 [M+H]+; 1H NMR δ: 3.82 (s, 3H, CH3), 6.87-7.64 (m, 13H, Ph-H), 8.31 (s, 1H, O-H), 13.04 (s, 1H, N-H); 13C NMR δ: 55.7, 112.8, 112.9, 116.7, 118.4, 126.7, 127.0, 127.2, 128.3, 128.5, 128.7, 128.8, 130.2, 133.6, 134.0, 146.0, 146.9, 148.4.

2-(2-Chloro-phenyl)-4,5-diphenyl-1H-imidazole (4j), white solid; m.p.197-198 °C; m/z (ESI): 331 [M+H]+; 1H NMR δ: 7.28-7.86 (m, 14H, Ph-H), 12.70 (s, 1H, N-H); 13C NMR δ: 127.1, 127.6, 127.7, 128.2, 128.4, 128.7, 129.2, 130.4, 130.7, 131.3, 132.0, 132.1, 135.5, 137.4, 143.7.

2-(4-Chloro-phenyl)-4,5-diphenyl-1H-imidazole (4k), white solid; m.p.262-263 °C; m/z (ESI): 331 [M+H]+; 1H NMR δ: 7.24-8.12 (m, 14H, Ph-H), 12.79 (s, 1H, N-H); 13C NMR δ: 127.1, 127.3, 127.6, 128.4, 128.7, 129.1, 129.2, 129.6, 131.3, 133.2, 135.4, 137.8, 144.8.

2-(4-Hydroxy-phenyl)-4,5-diphenyl-1H-imidazole (4l), white solid; m.p.255-256 °C; m/z (ESI): 313 [M+H]+; 1H NMR δ: 6.86-7.92 (m, 14H, Ph-H), 9.74 (s, 1H, O-H), 12.43 (s, 1H, N-H); 13C NMR δ: 115.8, 115.9, 122.1, 126.8, 127.3, 127.5, 127.7, 127.8, 128.0, 128.6, 128.8, 129.1, 131.7, 131.8, 135.9, 137.1, 146.4, 146.5, 158.1, 158.3.

2-(4-Dimethylamino-phenyl)-4,5-diphenyl-1H-imidazole (4m), brown solid; m.p.255-256 °C; m/z (ESI): 340 [M+H]+; 1H NMR δ: 2.96 (s, 6H, 2CH3), 6.79-7.92 (m, 14H, Ph-H), 12.32 (s, 1H, N-H); 13C NMR δ: 39.5, 39.6, 111.9, 118.3, 126.3, 127.0, 127.4, 128.1, 128.2, 128.5, 131.4, 135.6, 136.5, 146.5, 150.2.

2-(4-Methoxy-phenyl)-4,5-diphenyl-1H-imidazole (4n), white solid; m.p.231-232 °C; m/z (ESI): 327 [M+H]+; 1H NMR δ: 3.82 (s, 3H, CH3), 7.04-8.04 (m, 14H, Ph-H), 12.52 (s, 1H, N-H); 13C NMR δ: 55.2, 114.1, 123.1, 126.4, 126.7, 127.0, 127.6, 128.1, 128.3, 128.6, 131.2, 135.3, 136.8, 145.6, 159.4.

RESULTS AND DISCUSSION

In order to improve the yield, the effects of the molar ratio on the condensation of 4-chlorobenzaldehyde (2k), benzil with ammonium acetate were examined. The results are summarized in Table 1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Molar ratio*</th>
<th>Time (min)</th>
<th>Temp. (°C)</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1:2</td>
<td>200</td>
<td>140</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>1:1:3</td>
<td>110</td>
<td>140</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>1:1:4</td>
<td>110</td>
<td>140</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>1:1:3</td>
<td>90</td>
<td>140</td>
<td>79*</td>
</tr>
</tbody>
</table>

* Molar ratio of 1, 2k and 3.

b The temperature of oil bath.

* Without acetic acid.

As shown in Table 1, the yield of 4k increased from 75% to 92% by changing the molar ratio from 1:1:2 to 1:1:3, and the reaction time was shortened from 220 min to 110 min (Entries 1 and 2). By increasing the molar ratio from 1:1:3 to 1:1:4, the yield of 4k increased from 92% to 93% (Entry 3). The results show that changing the molar ratio of substrates from 1:1:3 to 1:1:4 had not a significant effect on the yield of 4k. Considering the atomic economic benefits, the optimum molar ratio of 1, 2, and 3 was 1:1:3.

A comparison experiment in the absence of acetic acid was also carried out, and 4k was obtained in 79% yield (Entry 4), while in the presence of acetic acid the yield was 92%, it indicated that acetic acid can improve the yield.

From the result above, the reaction conditions we
chose were as follow: the molar ratio of 1, 2 and 3 was 1:1:3, the temperature was 140 °C, HOAc was 0.5 mL. Using this reaction system, a series of 2-aryl-4,5-diphenylimidazoles were prepared. The results are summarized in Table 2.

From these results listed in Table 2, we can deduce that the yields are in general, similar or higher than those described in literatures. Compared with some other reported methods which use acetic acid as solvent, the main advantages of the procedure are less acetic acid used, short reaction times. For example, the condensation of benzil, aldehyde and ammonium acetate was carried out in 65%-88% yield in refluxing acetic acid for 5-6 h, whereas present procedure offered 2-aryl-4,5-diphenylimidazole in 86-95% yield by heating at 140 °C within 30-180 min. In the reaction catalyzed by Ytterbium perfluorooctanesulfonate \(^{10}\), the condensation of benzil, aldehyde and ammonium acetate was carried out in 75-97% yield at 80 °C using acetic acid as solvent for 6 h, while present procedure offered products in 86-95% yield by heating. Besides, this method did not need additional catalyst except acetic acid, and the amount of acetic acid was greatly decreased, it was one quarter of reported in the literatures\(^{5c,11}\).

CONCLUSION

In conclusion, we have found a simple, efficient and practical procedure for the synthesis of 2-aryl-4,5-diphenylimidazoles via the condensation of aromatic aldehyde, benzil and ammonium acetate catalyzed by acetic acid, which make it a useful and attractive process for the synthesis of these compounds. In both cases, the reaction was very tolerant of aromatic aldehydes carrying either electron-withdrawing or electron-donating substituent groups.

REFERENCES

1. Liebl R, Randte R, Mildenberger H, Bauer...
7. Kokare ND, Sangshetti JN and Shindea DB. One-pot efficient synthesis of 2-aryl-1-aryl methyl-1H-benzimidazoles and 2,4,5-triaryl-1H-imidazoles using oxalic acid catalyst, Synthesis. 2007; 18:2829-2834
8. Shapi AS, Umesh CN, Sanjay SP, Thomas D, Rajgopal JL and Kumar VS. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone, Tetrahedron. 2005; 61:3539-3546.
15. a) Zhou JF, Gong GX, Zhu HQ and Zhu FX.
