INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY

Review Article

Review on Process Validation of Famciclovir 500 mg Tablets

Mangesh Prakashchand Patni¹, Anand singh² and Anil Kumar²

¹Flat no. 202, Second floor, Shivaji park, Khodiyar nagar, Chharwada, Vapi 396191 Ta. Pardi, Dist. Valsad, Gujarat, India. ²School of pharmacy and medical science Singhania University, Pacheri bari, Jhunjhunu Rajasthan, India.

ABSTRACT

Validation is best viewed as an impartment and integral part of cGMP. Validation is therefore one element of quality assurance programs associated with a particular process. Then word validation simply means "assessment of validity" or action of proving effectiveness. This process involves addition of granulating agent to the dry mixed material and converting into granules. The goal of quality system is to consistently produce products that are suitable for their intended use. Process validation was carried out for Famciclovir 500 mg. In tablet dosage form, critical parameters like dry mixing, granulation, drying, sifting and milling, lubrication compression and Coating were taken up for validation studies. In-process quality monitoring of all critical processing steps was done for three production batches. LOD of the dried, milled and lubricated granules were checked and found within the limit. Assay after lubrication was within the specified limit, indicating blend uniformity. Physical parameters, dissolution and assay were checked and found satisfactory. Thus process validation of Famciclovir 500 mg was successfully completed and found within the specifications.

Keywords: Process validation, Famciclovir, Lactose anhydrous, Sodium starch glycollate.

INTRODUCTION¹⁻¹²

USFDA Defines validation as

"Validation is establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its pre-determined specifications and quality characteristics."

WHO guidelines Defines validation as "Validation is documented act of proving that any procedure, process, equipment, material, activity or system actually leads to the expected results." Validation act of proving, in accordance of GMPs that any process actually leads to expected results. Documented evidence that the process, operated with in established parameters, can perform effectively reproducibly to produce a medicinal product meeting its predetermined specifications and quality attributes.

WHY VALIDATION?

If would not be feasible to use equipment not knowing if it will produce the product we want, not to employ the people with no assurance that they can do or fail to implement process checks or examination to assure that product meet specifications.

- The pharmaceutical industry uses expensive material sophisticated facilities and equipments and highly qualified personals.
- The efficient use of these resources is necessary for the continued success of the industry. The cost of product failure, rejects, reworks, recalls, complaints are the sufficient part of total production cost.
- Detailed study and controlled of the manufacturing process batch validation is necessary if failure cost is to be reduced and productivity is improved. There are three reasons by pharmaceutical industry are concerned that their processes perform consistently expected that is, that a r e validated.
- ➤ Assurance of quality, cost reduction.

Government regulations

Validation is considered to be integral part of

GMPs essentially world wide, compliances with validation requirements is necessary for obtaining approval to manufacture and to introduce new products. The FDA's cGMP refer to the concepts of the validation in both sections. They state that such control procedure shall be established to monitor out put and to validate the performance of those manufacturing process that may be responsible for causing variability in the characteristics of in process materials and drug Accuracy, sensitivity, materials. The specificity and reproducibility of test methods employed by the firm shall be established and documented. A generally stated requirement for process validation is contained in the medicinal device GMP regulations. Where deviations from device specification could occur as result of manufacturing process itself. There shall be written procedures describing any process controls necessary to assure conformance to specifications.

How validation is done?

The principle is characterized by harmony between the results obtained and requirements. This supposes specific requirements and objectives

> Available means

> Choices, which are justified in relation to objectives

► Each stage should begin when the previous stage is over.

Certain depositions should be defined:

How norms should be dealt with

→ How modifications should be dealt with controlling evaluation will involve

- Set data for decision making
- Evaluation before decision making
- Justifying the decision
- ➢ Follow-up

TYPES OF VALIDATION

Prospective validation

Prospective validation is defined as the Establishment of documented evidence that a system does what it purports to do based on a pre planned protocol. This validation is usually carried out prior to the introduction of new drugs and their manufacturing process. This approach to validation is normally under taken when new formula, process or facility must be ever validated before routine pharmaceutical formulation commences. In fact validation of process by this approach often leads to transfer of the manufacturing process from the development function to product. The objective of prospective validation is to prove or demonstrate that the process will work in accordance with a validation master plan or protocol prepared for pilot product trails.

Retrospective validation

Retrospective validation is defined as the establishment of documented evidence that a system does what it purports to do on review and analysis of historical information. The sources of such data are production, QA and QC records. The issues to be addressed here are changes to equipment, process, specification and other relevant changes in the past.

Concurrent validation

It is similar to the prospective, except the operating firm will sell the product during the qualification runs, to the public as its market price. This validation involves in process monitoring of critical processing steps and product testing. This helps to generate and documented evidence to show that the production process is in a state of control.

> Revalidation

It is the repetition of a validation process or a part of it. This is carried out when there is any change or replacement in formulation, equipment plan or site location, batch size and in the case of sequential batches that do not meet product specifications and is also carried out at specific time intervals in case of no changes.

PROCESS VALIDATION

"Process Validation is establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its predetermined specifications and quality characteristics."

Objectives of process validation

- 1) The manufacturing process, in addition to the individual equipment, must be validated.
- 2) The goal is to create a robust manufacturing process that consistently produces a drug product with minimal variation that adheres to quality criteria of purity, identity, and potency.
- 3) A validation plan for the manufacturing process should be drafted and executed by engineers in order to satisfy guidelines. The validation plan usually involves just a PQ section.
- 4) Just as equipment validation, major changes after the initial validation will result in the need for subsequent revalidation.
- 5) In the end, process validation will ensure a robust product that is highly reproducible over time.

Advantages of process validation

- 1) Expanded real time monitoring and adjustment of process.
- 2) Enhanced ability to statistically evaluate process performance and product variables. e.g., individuals; mean; range; control limits
- 3) Enhanced data and evaluation capabilities and increased confidence about process reproducibility and product quality.
- 4) Improved ability to set target parameters and control limits for routine production, correlating with validation results.
- 5) Enhanced reporting capability.

PROCESS VALIDATION PROTOCOL

"A written plan stating how validation will be conducted, including test parameters, product characteristics, production equipment and design points on what constitutes acceptable test results." The validation protocol should be numbered, signed and dated, and should contain Protocol Approval sheet, Validation Team, Batches under validation, Introduction, Product profile, Objective, Scope, Validation criteria, Reference documents, points, General check Responsibilities, Manufacturing formula, Details of the used equipment/facilities to be (including measuring/ monitoring/ recording) with its calibration status, Process flow chart, Manufacturing procedure, Rationale for selection of critical steps and its parameters for validation, Process steps, control variables and response to be measured, Sampling plan (The samples to be takenwhere, when, how, how many and the allowable range of variability), Sampling procedure, Specifications, Raw materials - Rationale. Wet granulation - Rationale, Compression - Rationale and Procedure, Calibration, Acceptance criteria, Validation report preparation, Deviation, Approach for handling out of specification results, Revalidation criteria, Summary and Conclusion.

MATERIALS AND METHODS

All the materials are listed in Table 1.

EVALUATION OF TABLET³⁻⁸

The critical parameters considered during the process validation of Famciclovir 500 mg tablets were Dry Mixing, Granulation, Drying, Milling, Blending/Lubrication, Compression, Coating and bulk Packing.

Dry mixing

The dry-mixing step involves mixing of active ingredients with other additives using Rapid Mixer Granulator (RMG). Mixing speed and mixing time are the critical variables. Mixing speed is kept constant, mixing time shall be studied to validate dry mixing step also analyse the tapped, untapped density for record purpose only. In dry mixing stage 3 batches like I, II and III are considered for validation. Dry mixing results of all the batches are well within the acceptance criteria. Result of dry mixing are shown 03 no. table. Parameters

Time of mixing : 7 minutes Agitator speed : Slow

Granulation

The granulation is to be performed using RMG. The granulation step involves converting the powder into wet dough mass. Mixing time influences the granule strength, bulk density of blend, dissolution, hardness of tablets etc. Binder solution is being used for granulation. The granulation end point is critical process and the end point of granulation shall be checked against the amperage readings of impeller of the RMG, which gives the co-relation to the granulation end point. Result of granulation shown in table no. 03. Parameters are as below:

Binder addition time	: 1 minutes
Total amount of binder	: 8 . 81 kg
Agitator reading	: 8±1
Chopper reading	: 4±1

Drying

The drying step involves drying of wet mass. The level of moisture in the granules is important factor. If level of moisture is more in granules then blend will have poor flow & distribution characteristics. If level of moisture in blend is less it will produce tablet with capping, high friability and chipping problems. During drying the desired LOD will be maintained in the granules which will influence the quality parameters like tablet hardness, flow properties, physical properties during compression. Drying of granules in FBD controls the level of moisture. Inlet temperature of FBD is most critical variable for the same. LOD is checked at regular interval to establish the correlation with outlet temperature. Drying results of the batches are well with in the acceptance criteria. Results of Loss on drying are shown in Table 3. Analysis

Acceptance criteria

: Loss on drying (by IR moisture balance analyzer) : NMT 0.9-1.5 % w/w

Milling

Sizing of granules is to be obtained by sifting of granules from specified sieve and retention of granules on sieves is to be milled by using multimill, Speed of the multimill and Forward direction of knives is to be monitored and sample to be withdrawn at the end of the sizing operation

for the monitoring of particle size distribution, bulk density and LOD as a part of validation. Results of milled granules are shown in Table 3.

Analysis	: Particle size distribution,
	Untapped bulk density, tapped
	bulk density and LOD.
Acceptance	: LOD : NMT 0.9-1.5 % w/w at
criteria	105 [°] C

Blending/Lubrication

This step involves mixing of magnesium stearate with drug granules & other blending material. Sifted lubricants shall transfer to octagonal blender containing dried granules of famciclovir and mix for 10 minutes at slow speed. Sifted magnesium stearate shall transfer to octagonal blender and Mix for 3 minutes at slow speed. The purpose of blending is to get a uniform distribution of API. This is followed by mixing of the unlubricated blend with lubricant to get good flow and antiadhesion property of the blend. Mixing speed and time are critical variables in this process. Mixing speed is kept constant. Mixing time is critical since under mixing will result in nonuniform distribution of drug and poor flow where as over mixing will result in de-mixing leads to non-uniform distribution of drug. Checking content uniformity of API at fixed time shall validate blending time. In blending stage three batches i.e. Batch I, II and III shall be considered for validation. Blending results of all the batches are well with in the acceptance Results of content uniformity during criteria. blending were shown in Table 9. Results of particle size distribution, bulk density, LOD and assay of composite sample at the end of lubrication are shown in Table 3.

Analysis	: Blend uniformity, particle size
	distribution, Bulk density,
	LOD and Assay
Acceptance	: LOD: NMT 2.0 % w/w
criteria	Assay: 95.0 -105.0 %

Compression

This step involves consistent flow of an adequately lubricated, uniform blend, into dies where the granules are being compressed into tablets. Compression is to be carried out as per batch manufacturing record. Collect the samples at various stages i.e. at Minimum Hardness, Maximum Hardness, Minimum Speed, Maximum Speed and At Optimum speed Initial stage, Middle stage and End stage of compression and carry out the testing of physical parameters such as Appearance, Group wt., Diameter, Hardness, Thickness, Friability, Disintegration time and Average wt., Dissolution at max hardness only and Assay. In compression stage three batches i.e. Batch No A, B and C shall be considered for validation. Compression results of all the batches are well with in the acceptance criteria. Various physical parameters, approximate sample size, acceptance criteria during compression and results of various physical parameters are shown in Table 4 and 5.

Thickness, Length and Width

30 tablets were randomly selected from each batch and their thickness, length and width were measured by using digital Vernier caliper.

Hardness

The crushing strength of prepared tablets was determined for 6 tablets of each batch by using Erweka tablet hardness tester. The mean of hardness was determined.

Friability

9 tablets (Approximate 6.5 g) were weighed and placed in the Roche friabilator and apparatus was rotated at 25 rpm for 4 minutes. After revolutions the tablets were deducted and weighed again. The percentage friability was measured using the formula,

% $F = \{1-(W_t/W)\} \times 100$

% = friability in percentage

FW = Initial weight of tablet

 W_t = weight of tablets after revolution

Disintegration time

6 tablets were placed in the tablet disintegration test apparatus and on it. Disintegration time of the tablets was noted.

Weight variation

30 tablets were randomly selected from each batch and individually weighed. The average weight of 30 tablets was calculated. The batch passes the test for weight variation test if the tablet weight is within the acceptance criteria shown in Table 5.

Capability Index

The capability indices to be calculated for weight sample using following formula:

Cp = (USL - LSL)/6s

CpU = (USL - X)/3s

CpL = (X - LSL)/3s

- CpK = min (CpU, CpL)
 - (smallest of the values for CpU and CpL i.e. Capability Index)

Where,

USL = upper specification limit for weight

LSL = lower specification limit for weight

X = mean for weight

S = standard deviation

Capability result are shown in table no. 21.

Dissolution

Medium: water; 900 mL Apparatus 2: 50 rpm Time: 30 minutes Procedure

Pour 900 mL of dissolution medium in each vessel. Allow sufficient time for the dissolution medium to equilibrate at $37^{\circ}C\pm0.5^{\circ}C$. Adjust stirring element speed to 50 rpm. Immerse the paddle in the dissolution medium so that there is a distance of 2.5 cm \pm 0.2 cm between the bottom of the paddle and inside bottom of the vessel. Put tablet in each of the vessels taking care to exclude air bubbles from the surface of the dosage form unit. Start the apparatus.

At the end of the specified time, withdraw 10 mL aliquot from a zone midway between the surface of the dissolution medium and the top of the rotating paddle and filter through 0.45 μ m nylon filter (25 mm). Discard first 2 mL of the filtrate. Dilute 5 mL of the filtrate to 100 mL with diluent, mix. and analyse on HPLC

Tolerance

Not less than 80 (Q) % of the labeled amount of $C_{14}H_{19}N_5O_4$ is dissolved in 30 minutes.

Uniformity of dosage units meet the requirements.

The results are shown in Table 5.

Assay

Weigh 20 tablets and determine the average weight. Weigh accurately and transfer intact tablets equivalent to about 2000 mg of Famciclovir to a 1000 mL volumetric flask. Add about 200 mL of diluent and sonicate for 5 min to disperse the tablets. Add about 500 L of diluent and sonicate for 10 min with intermittent shaking. Dilute to volume with diluent, mix. Filter the solution through 0.45 μ m nylon filter (25 mm), discarding first 2 mL of the filtrate. Dilute 5 mL of the subsequent filtrate to 200 mL with diluent, mix and analyse on HPLC. The results are shown in Table 5.

Coating

This step involves consistent flow of an adequately compressed tablet, into coating pan where the compressed tablet are coated . Coating is to be carried out as per batch manufacturing record. Collect the samples at various stages i.e. at different lot and carry out the testing of as Appearance, physical parameters such Thickness, length, width, Disintegration time, group and average wt., uniformity of weight, % weight gain, Dissolution. In coating stage three batches i.e. Batch No A, B and C shall be considered for validation. Coating results of all the batches are well with in the acceptance criteria. Various physical parameters, approximate sample size, acceptance criteria during coating and results of various physical parameters are shown in Table 6-8.

Thickness, Length and Width

30 tablets were randomly selected from each l o t / batch and their thickness, length and width were measured by using digital Vernier caliper.

Disintegration time

6 tablets were placed in the tablet disintegration test apparatus and on it. Disintegration time of the tablets was noted. The result noted in table no. 8.

Uniformity of weight/ Average weight/Group weight

20 tablets were randomly selected from each lot/ batch and individually weighed. The average weight of 2.0 tablets was calculated. The batch passes the test for weight variation test if the tablet weight are within the acceptance criteria shown in Table 8.

Packing

Bulk packing is to be done as per batch packing record and involves packing of tablets in HDPE container pack . In packing stage three batches i.e. Batch I, II and III shall be considered for validation. Packing results of all the batches are well with in the acceptance criteria. Results of bulk packing were shown in Table 9.

Validated parameters:

Bulk	: 15 to	25 cor	ntainer/	minute
counting	(Challenge	on	minimu	m to
machine	maximum s	peed)		
speed				
Tablet	: 30 tablet/c	ontainer.		
counting				

Finished product analysis report is shown in Table 10.

RESULTS AND DISCUSSION

All the results are tabulated in Table 4 - 10

The quality system regulation defines process validation by establishing objective evidence that a process consistently produces a result or product meeting its predetermined specifications. The goal of quality system is to consistently produce products that are suitable for their intended use. Process validation is a key element in assuring that these principles and goals are met.

In this study concurrent process validation was carried out for one product. In tablet dosage form, critical parameters were taken up for validation studies.

In tablet dosage form, the critical parameters are:

- Dry Mixing
- ➢ Granulation
- > Drying
- ➤ Milling
- Blending/Lubrication
- ➢ Compression
- Coating

Bulk Packing

Dry mixing

The dry-mixing step involves mixing of Famciclovir with other additives using Rapid mixer granulator. The mixing of the active ingredient depends on the mixing time.

Granulation

The granulation is to be performed using RMG. The granulation step involves converting the powder into wet dough mass. Mixing time influences the granule strength, bulk density of blend, dissolution, hardness of tablets etc. Binder solution is being used for granulation. The granulation end point is critical process and the end point of granulation shall be checked against the amperage readings of impeller of the RMG, which gives the co-relation to the granulation end point. If binding not given to the dry mixed product then granules formation is not properly.

Drying

The drying step involves drying of wet mass. Moisture in granules is important factor. If moisture is more in granules it will lead to poor flow and sticking problem. If moisture is less it will lead to capping, high friability and chipping. During drying the LOD of granules should be taken in to consideration. The inlet temperature of the FBD is controlled during the drying process and the outlet temperature is monitored and correlated with the corresponding LOD of the granules under drying.

Milling

Dried granules were than sifted and milled on multimill. At the end of milling, composite sample was withdrawn and tested for particle size distribution, bulk density and LOD. Results obtained were found well within the limit and recorded.

Blending/Lubrication

The blending of three batches was performed and the samples at the designated locations were drawn after 3 minutes of blending after transferring magnesium stearate to octagonal blender for determining the blend uniformity and RSD values of famciclovir. The RSD values meet the acceptance criteria. From the analytical results it is clear that the drug distribution pattern in the blend is almost homogeneous. Hence the blending time of 3 minutes after addition of magnesium stearate as mentioned in the BMR stands was validated.

Compression

The compression for all the three batches has been validated for minimum and maximum hardness, minimum and maximum speed and at optimum speed; initial stage, middle stage and end stage of compression. The results of physical parameters like appearance, thickness, length, width, hardness, friability, disintegration time, group weight, average weight, uniformity of weight and capability index, dissolution and assay of the tablets were well within the acceptable limits. The results are comparable among all the three batches.

Coating

The coating for all the three batches has been validated and different parameter were verified such as appearance, group weight,length, width, Thickness, Disintegration time, uniformity of weight, % weight gain, Average weight, Dissolution were well within the acceptable limits. The results are comparable among all the three batches.

Bulk packing

This process involves packing of tablets in HDPE container. speed of machine, counting of tablet and leak test are critical variables. Induction sealing is required to get proper sealing, less temperature will lead to improper sealing which cause leakage and higher temperature will result in burning or spoilage of HDPE container. Leak test and counting verification are carried out to establish the above variables during bulk packing operation.

CONCLUSION

Process validation study on three consecutive batches, Batch I, II and III of Famciclovir 500 mg tablets having batch size of 112500 tablets was successfully completed and the manufacturing critical process parameters were validated of this transferred product to show that the process was under control. The study includes the validation of critical steps of manufacturing such as blending, compression and blister packing. It shall also establish the suitability of equipments and area used for the production. The all process validation batches had been manufactured and validated in full compliance with cGMP requirement.

Based on the results of the validation data, it shall be concluded that the manufacturing process consistently produces the product of predetermined quality parameters. The Process validation showed that there was no significant batch-to-batch variation and all the process variables were studied and it showed consistent and reproducible results. Therefore it can be concluded that the process stands validated and the data can be used in regulatory submission.

S. No.	Ingredients	Function
1	Famciclovir	API (Antiviral)
2	Lactose anhydrous	Diluent /Filler
3	Sodium starch glycolate	Disintigrating agent
4	Hydroxy propyl cellulose	Binder
5	Purified water	Vehicle
6	Lactose Anhydrous	Diluent
7	Low-Substituted Hydroxy propyl cellulose	Diluent
8	Sodium starch glycolate	Lubricant, Glidant
9	Magnesium stearate	Lubricant
10	Opadry white Y-1-7000	Coating material

Table 1: List of Raw materials and their Functions

Table 2: List of Equipments and their Uses

S. No.	Equipment name	Used for
1.	Vibro sifter (20 #, 40 #, 60 #, 80 #,100 # sieves)	Sifting of raw materials
2.	Multimill	Milling
3.	Rapid mixer granulator (High shear granulator)	Dry mixing and granulation
4.	Paste kettle	Preparation of paste
5.	Mechanical stirrer	Stirring
6.	Fluid bed dryer	Drying
7.	Octagonal blender	Blending
8.	Unit dose Sampler	Sampling of granules
9.	20 station compression machine (Cadmach)	Compression
10.	Deduster	Dedusting of tablet
11.	Metal detector	Detecting metal, if any
12.	Tablet inspection belt	Inspection of tablets
13.	Coating pan	Coating
14.	Bulk pack machine	Packing of tablets
15.	Analytical balance	Weighing
16.	IR (Electronic) moisture balance analyzer	LOD
17.	Roche friabilator	Friability
18.	Tablet disintegration test apparatus	Disintegration Time
19.	Hardness Tester (Erweka)	Hardness
20.	Vernier calipers	Thickness, length and width
21.	Leak test apparatus	leak test
22.	Infra-red	Identification
23.	UV-visible spectrometer	Identification, Dissolution, Assay
24.	High performance liquid chromatography	Related substances

Table 3: Result of granulation stage

		Result of Bu	ılk Density (Dry	Mix)						
Batch No.	Lot	Tapped	Bulk Density (g / ml)		l Bulk Density n / ml)		LOD at 70°C IR Balance			
А	Ι		0.65		0.46		1.01			
	II		0.64		0.48	0	.74			
В	Ι		0.63		0.48	1	.33			
	II		0.63		0.48	1	.96			
С	Ι		0.64		0.47	47 1.02				
	II		0.63		0.46	1.04				
Acceptance	e Criteria		For Record							
		Observation d	uring Wet Gran	ulation						
Operati	on			RESU	LTS					
Mixin	g	Batch N	lo.: A	Batch N	o.: B	Batch No.: C				
		Lot-I	Lot-II	Lot-I	Lot-II	Lot-I	Lot-II			
Total amount	of binder	8.81 kg	8.81 kg	8.81 kg	8.81 kg	8.80 kg	8.79 kg			
Binder additi	on time	01 min	01 min	01 min	01 min	01 min	01 min			
Additional amount purified	l water added (if any)	0.80 kg	0.90 kg	0.80 kg	0.90 kg	0.90 kg	0.90 kg			
Ampere reading at end	Agitator (8±1)	8.5 A	8.5 A	8.5 A	8.5 A	8.3 A	8.2 A			
point	Chopper (4±1)	4.2 A	4.3 A	4.2 A	4.2 A	4.1 A	4.2 A			
Total Granulat	ion Timo	04 min 30	04 min 30	04 min 30	04 min 30	04 min 30	04 min 30			
I otal Granulat	ion i nne	sec	sec	sec	sec	sec	sec			
		Result o	of Loss on Dryin	g						

IJAPBC – Vol. 2(3), Jul-Sep, 2013

ISSN: 2277 - 4688

	(g)			tch A				Batch B				Bate		
ап	ed	I	.ot I]	Lot II]	Lot I		Lot	II	Lo	ot I	Lo	t II
Sample location	ui-r	en	%	en	%	en	%		en	%	en	%	en	%
San	ıbə	g)		Wt Taken (g)		Wt Taken (g)			Wt Taken (g)		Wt Taken (g)		Wt Taken (g)	m/m
5	t R	't T (j	LOD w/w	11 (LOD w/w	11 ((TOD M/W		E 1	LOD w/w	11 (j	LOD w/w	't T (j	IO' M
	M	1	L L	*	Ц	*	Г		5	T	5	Г	М	Г
T1	2 – 5	2.1	1.4	2.0	0.9	2.0	1.	2	2.2	1.1	2.2	1.3	2.1	1.2
T2	2 – 5	2.0	1.4	2.0	1.3	2.1	1.	1	2.1	1.0	2.1	1.4	2.1	1.3
M1	2 – 5	2.0	1.0	2.1	1.0	2.2	1.	1	2.3	1.2	2.2	1.1	2.1	1.0
M2	2 – 5	2.1	1.3	2.2	1.1	2.3	1.	2	2.3	1.2	2.1	1.1	2.1	1.3
M3	2 – 5	2.1	1.4	2.0	1.3	2.1	1.	1	2.3	1.0	2.1	1.3	2.0	1.2
B1	2 – 5	2.1	1.2	2.1	1.1	2.1	1.		2.1	1.0	2.1	1.1	2.0	1.0
B2	2 – 5	2.1	1.3	2.0	1.0	2.1	1.		2.1	1.1	2.1	1.4	2.4	1.2
					lt of Milling	- Particle	size dis							
Sieve S	ize	Accep	tance Crite	ria				%	w/w Rete					
						ch A			Bate		-		atch C	
20 # Daggad	thuough		NLT 95%		Lot I 99.34	Lot 99.		Lo 98.		Lot I 98.58		Lot I 98.95		ot II 9.07
			NLT 93% 25 % TO NN	<i>И</i> Т	42.55	42.		47		46.93		36.55		9.07 9.51
00 # (Kete	nuon)	INLI 2	60 %	11	42.55	42.	07	47.	.30	40.95	'	30.55	5	9.51
100 # Passed	through	N	MT 60 %		34.30	33.	50	35	.28	33.94		46.60	4	4.04
					Milling - Bu			OD						
Batch	LOT	Γ	Untappe	d bulk d					ensity (g	/mL)		LOD (% w/w)	
Α	Ι	0.61			ı/ml		0.43 gm/ml					1.	.38	
	II												1.12	
В	I			U		5					1.06			
			0.61 gm/ml 0.43 gm/ml 0.61 gm/ml 0.41 gm/ml 0.61 gm/ml 0.45 gm/ml 0.61 gm/ml 0.45 gm/ml 0.61 gm/ml 0.45 gm/ml 0.61 gm/ml 0.43 gm/ml						1.26					
С				0				U					22	
				0.63 gm				0.42 g			-	1.28		
Accepta	nce Criteria	1		To Rec	ora I lt of Lubric a	tion Co.	ntont un	To Re				(0.9-1.5	% w/w)	
Sample		Rat	tch A	Resu			Batch B		.y			Batch C		
Sample			min				3 min					3 min	•	
	Weight	-		Assay	Weig	ght taken		%	Assay	Wei	ight tak		% A	ssay
T1				98.4		1.600		9	99.3		1.642			9.5
T2				98.1		1.630			99.3		1.629			3.9
				98.2		1.632			98.1		1.653			0.0
				98.5		1.614			98.6		1.653			3.9
				97.7		1.646			98.5		1.651		99	
-				98.0		1.659			99.5		1.640			9.4
				98.3 97.8		1.652 1.619			98.2 98.0		1.672			3.8 3.3
-				97.0		1.626			97.8		1.686			8.6
				98.3		1.655			97.9		1.675			3.5
Mean				98.0					98.5					3.9
RSD				0.46					0.65					40
				Lı	ibrication - p	article siz	ze distri	bution						
Sieve Size		Acceptar	ice Criteria	ı				%	w/w Rete					
		-				ch A			Batch				atch C	
		For	record			.41			32.7				32.46	
100 # T						.27	LOD		20.1	.6			20.36	
D-4-1		Cov-1	TT -		rication - Bul					(% w/v		A		
Batch		Sample	Un	apped b (g/n	ulk density	гаррес	d bulk d (g/ml)	ensity	LOD	(70 W/N	()	Assa	y (%)	
Α		Composit	e	0.5			0.68		+	0.50			98.6	
B		r		0.5			0.68			0.67			98.1	
C	Image: Second system Image: Second system Image: Second system T1 2 - 5 2.1 T2 2 - 5 2.0 M1 2 - 5 2.0 M2 2 - 5 2.1 M3 2 - 5 2.1 B1 2 - 5 2.1 B1 2 - 5 2.1 B2 2 - 5 2.1 B2 2 - 5 2.1 B1 2 - 5 2.1 B1 2 - 5 2.1 Sieve Size Accept 0 # Passed through MLT 0 # Passed through M 60 # (Retention) NLT B II B II B II A I I 1.548 T2 1.547 T3 1.519 T4 1.532 M1 1.532 M1 1.532 M1 1.548 B1 1.545 B3 1.542 Mean Sompl			0.4			0.68		1	0.45			98.1	
Acceptanc	e			To re		Т	o record	1	(NI	MT 2.0 %		For info	mation of	only
Criteria										w/w)				
							-							

		e ernerna aaring com	F
S. No.	Individual In-process Test Parameter	Approximate sample size	Acceptance criteria
1	Appearance	30 tablets	White to off white, oval shaped, biconvex uncoated tablets engraved with "ML 72 " on one side and plain on other side.
2	Thickness	30 tablets	5.50 mm + 0.20 mm (5.30 mm - 5.70 mm)
3	Length	30 tablets	$18.00 \text{ mm} \pm 0.20 \text{ mm}$
	Width	30 tablets	$8.50\ mm\pm0.20\ mm$
4	Hardness	6 tablets	$170 \pm 50 \text{ N} (120 - 220 \text{ N})$
5	Friability	9 tablets (Approx. 6.5 g)	NMT 1.0% w/w
6	Disintegration time	6 tablets	NMT 15 minutes
7	Weight of 30 tablets (Group weight)	30 tablets	19.80 g + 2.0 % (19.40 g - 20.20 g)
8	Average weight	30 tablets	660.0 mg + 2.0 % (646.8 mg - 673.2 mg)
9	Uniformity of weight	30 tablets	$\begin{array}{c} 660.0 \ \text{mg} \pm 5.0 \ \% \\ (627.0 \ \text{mg} - 693.0 \ \text{mg}) \end{array}$
10	Capability index	30 tablets	Not less than 1.33

Table 4: Various Physical parameters, Approximate sample size and Acceptance criteria during compression

Table 5.0: Result of compression stage Result of Thickness

					Thickness	s (mm)						
					Batch I			Batch II		Batch	III	
5	Stage of Sai	mpling		Min	Ma	ax	Μ	lin	Max	Min	Max	
Ν	/inimum Ha	ardness		5.51	5.6	52	5.	52	5.65	5.50	5.64	
N	laximum H	ardness		5.49	5.5	6	5.	42	5.55	5.47	5.52	
	Minimum S	Speed		5.50	5.6	i5	5.	49	5.60	5.51	5.58	
	Maximum 3	Speed		5.54	5.6	52	5.	53	5.60	5.51	5.60	
Initial st				5.55	5.6	52	5.	50	5.55	5.56	5.64	
Middle s	tage			5.51	5.6		5.	50	5.55	5.52	5.65	
End sta	ige			5.50	5.5	8	5.	49	5.54	5.55	5.61	
				Re	esult of Friabi	ility (% '	w/w)					
S	Stage of Sar	mpling			Batch I			Batch II		Batch	1II	
Ν	/inimum Ha	ardness			0.14			0.09		0.3	1	
Maximum Hardness				0.09			0.10		0.1			
Minimum Speed				0.21			0.24		0.2	3		
	Maximum	Speed			0.09			0.13		0.1	4	
Initial st	age	44.04	ptimum		0.20			0.21		0.2	7	
Middle s	tage				0.21			0.17		0.2	0	
End sta	ige	ր	peed		0.26			0.17		0.15		
					Length and	d Width						
64	. e e	_	Parai		Bat	ch I		Bato	h II	Bat	ch III	
Stage	of Sampling	g	Parai	neter	Min	Max	x	Min	Max	Min	Max	
			Len	gth	18.01	18.0)5	18.00	18.05	18.02	18.04	
Minim	um Hardnes	SS	Wi	dth	8.51	8.55		8.50	8.54	8.51	8.54	
N	TT 1		Len	gth	18.00	18.0)3	18.01	18.04	18.01	18.05	
Maxim	um Hardnes	SS	Wi	dth	8.50	8.54	4	8.51	8.55	8.50	8.53	
Minin			Len	gth	18.01	18.0)4	18.00	18.03	18.00	18.03	
Minir	num Speed		Wi		8.51	8.55	5	8.50	8.53	8.51	8.54	
Mania			Len	gth	18.00	18.0)4	18.00	18.05	18.00	18.03	
Maxii	num Speed		Wi	dth	8.50	8.54	4	8.51	8.53	8.51	8.55	
T.: 141-1 - 4			Len	gth	18.01	18.0)3	18.00	18.04	18.00	18.05	
Initial stage			Wi	dth	8.51	8.53	3	8.50	8.55	8.50	8.54	
Middle	At Opt	imum	Len	gth	18.00	18.0)4	18.01	18.05	18.01	18.04	
stage	spe	ed	Wi	dth	8.51	8.55		8.51	8.54	8.50	8.53	
End stores			Len	gth	18.01	18.0)5	18.00	18.04	18.00	18.05	
End stage			Wi	dth	8.50	8.53	3	8.51	8.55	8.50	8.54	
					Hardn	ness						
St	age of Sam	pling				Hare	dness	(Kg/cm ²)			Mean	
					Batcl	ı I						
	inimum Haı			133	130	13		131	140	132	134	
	aximum Ha			200	186	19		185	179	180	187	
	Minimum S			155	160	15		152	151	150	155	
Ν	Aaximum S	peed		166	162	16	0	157	155	153	159	

www.ijapbc.com

IJAPBC – Vol. 2(3), Jul-Sep, 2013 ISSN: 2277 - 4688

Initial sta	nge	44.0		157	160)	162	163	159	1:	58	160	
Middle st	age		ptimum peed	160	158	3	155	153	166	10	57	160	
End stag	ge	չլ	Jeeu	153	156		157	169	160	15	58	159	
						atch II							
	inimum Har			129	131		130	140	135		30	133	
	aximum Har			189 165	190		196 162	188 168	185 166	-	92 58	190 163	
	Ainimum Sp Aaximum Sp			165	162		162	159	160		50	165	
Initial sta				163	169		170	168	167		56	167	
Middle st	age		ptimum	160	163		164	159	162		53	162	
End stag		sp	peed	168	159		162	160	162		58	162	
			I		B	atch III	I				I		
Mi	inimum Har	dness		127	138		140	132	129	13	33	133	
Ma	aximum Har	dness		187	183		181	190	179		77	183	
	Ainimum Sp			155	160		159	162	163		50	160	
	/laximum Sp	peed		166	169		159	170	161		58	166	
Initial sta	U	At O	ptimum	168 172	163		158	154 161	165 169		70 51	163	
Middle sta End stag		sp	peed	172	158		165 172	161	169		55	164 167	
Enu stag	ge		Result of '					$\frac{109}{109}$		10	55	107	
S	Stage of San	npling	itesuit of	Jointegru	Batch I			Batch II	- 0)		Batch III		
	linimum Ha			(09 min 43 s		1	09 min 40 s	ec	0	9 min 50 s		
N	laximum Ha	ardness			10 min 30 s			10 min 26 s	ec		0 min 24 s		
	Minimum S				09 min 55 s			10 min 00 s			0 min 10 s		
	Maximum Speed				10 min 15 s			10 min 23 s			0 min 28 s		
	Initial stage At Optimum				10 min 09 s			09 min 50 s			0 min 26 s		
Middle s	5		speed	-	09 min 50 s			10 min 00 s			0 min 19 s		
End sta	ige				09 min 40 s	sec p weight (g		10 min 11 s	ec	0	9 min 54 s	ec	
S	Stage of Sar	nnling			Batch I		;) 	Batch II			Batch III		
	linimum Ha				19.924			19.777		19.809			
N	laximum Ha	ardness		19.868			19.820			19.858			
	Minimum S	Speed			19.818			19.814			19.855		
	Maximum S	Speed			19.847			19.812		19.854			
Initial st	U	At	Optimum		19.856			19.858			19.826		
Middle s	0		speed		19.888			19.880			19.827		
End sta	ige				19.917	e weight (n		19.803			19.805		
6	Stage of San	nnling			Batch I		iig)	Batch II			Batch III		
	linimum Ha			-	664.1			659.2			660.3		
	laximum Ha				662.3			660.7			661.9		
	Minimum S				660.6			660.5			661.8		
	Maximum S	Speed			661.6			660.4		661.8			
Initial st	age	Δt	Optimum		661.9			661.9			660.9		
Middle s	U		speed		662.9			662.7		660.9			
End sta	0 P				(())								
	ige				663.9	• • •		660.1			660.2		
64						nity of wei			ta (m)				
Stage of	f Sampling				Uniforn	Individu		660.1	ts (mg)				
Stage of			662	664	Uniforn				ts (mg) 664	662		659	
				664 662	Uniforn Bat	Individu tch no. A	al weight	of 30 table		662 660	660.2	659 658	
	f Sampling		662		Uniforn Bat 665	Individu tch no. A 662	al weight 671	of 30 table	664		660.2 671		
Minimu	f Sampling m Hardness		662 668 659 660	662 662 663	Uniform Bat 665 671 659 658	Individu tch no. A 662 666 666 659	671 668 663 660	of 30 table 671 664 664 664	664 657 661 662	660 660 662	660.2 671 668 666 661	658 671 663	
Minimu	f Sampling		662 668 659 660 659	662 662 663 657	Uniform Bat 665 671 659 658 658	Individu tch no. A 662 666 666 659 659	671 668 663 660 668	of 30 table 671 664 664 664 664 660	664 657 661 662 663	660 660 662 664	660.2 671 668 666 661 666	658 671 663 660	
Minimu	f Sampling m Hardness		662 668 659 660 659 656	662 662 663 657 664	Uniform Bat 665 671 659 658 656 656 667	Individu tch no. A 662 666 666 659 659 670	al weight 671 668 663 660 668 664	of 30 table 671 664 664 664 660 668	664 657 661 662 663 661	660 660 662 664 670	660.2 671 668 666 661 666 658	658 671 663 660 666	
Minimu	f Sampling m Hardness m Hardness		662 668 659 660 659 656 656	662 662 663 657 664 660	Uniform Bat 665 671 659 658 656 667 659	Individu tch no. A 662 666 666 659 659 659 670 661	al weight 671 668 663 660 668 664 664 661	of 30 table	664 657 661 662 663 661 662	660 660 662 664 670 661	660.2 671 668 666 661 666 658 660	658 671 663 660 666 657	
Minimu	f Sampling m Hardness		662 668 659 660 659 656 661 668	662 662 663 657 664 660 657	Uniform Bat 665 671 659 658 656 667 659 660	Individu tch no. A 662 666 666 659 659 670 661 662	671 668 663 660 668 664 661 661	of 30 table	664 657 661 662 663 661 662 658	660 660 662 664 670 661 661	660.2 671 668 666 661 666 658 660 660	658 671 663 660 666 657 659	
Minimu	f Sampling m Hardness m Hardness		662 668 659 660 659 656 661 668 661	662 662 663 657 664 660 657 657	Uniform Bat 665 671 659 658 656 667 659 660 668	Individu ach no. A 662 666 659 659 670 661 662 660	671 668 663 660 668 664 661 661 660	of 30 table	664 657 661 662 663 661 662 658 659	660 660 662 664 670 661 662	660.2 671 668 666 661 666 658 660 660 661	658 671 663 660 666 657 659 659	
Minimu Maximu Minim	f Sampling m Hardness m Hardness um Speed		662 668 659 660 659 656 661 668 661 666	662 662 663 657 664 660 657 657 657 657	Uniform Bat 665 671 659 658 656 667 659 660 668 661	Individu ach no. A 662 666 666 659 659 670 661 662 660 661	al weight 671 668 663 660 668 664 661 661 660 660	of 30 table	664 657 661 662 663 661 662 658 659 660	660 662 664 670 661 662 664	660.2 671 668 666 661 666 668 660 660 661 664	658 671 663 660 666 657 659 659 661	
Minimu Maximu Minim	f Sampling m Hardness m Hardness		662 668 659 660 659 656 661 668 661	662 662 663 657 664 660 657 657	Uniform Bat 665 671 659 658 656 667 659 660 668	Individu ach no. A 662 666 659 659 670 661 662 660	671 668 663 660 668 664 661 661 660	of 30 table	664 657 661 662 663 661 662 658 659	660 660 662 664 670 661 662	660.2 671 668 666 661 666 658 660 660 661	658 671 663 660 666 657 659 659 661	
Minimu Maximu Minim	f Sampling m Hardness m Hardness um Speed		662 668 659 650 655 656 661 668 661 666 660	662 662 663 657 664 660 657 657 657 664 660	Uniform Bat 665 671 659 658 656 667 659 660 668 661 656	Individu ach no. A 662 666 659 659 670 661 662 660 661 660	al weight 671 668 663 660 668 664 661 661 660 660 660 660	of 30 table	664 657 661 662 663 661 662 658 659 660 658	660 660 662 664 670 661 662 664 661 662 664	660.2 671 668 666 661 666 660 660 660 661 664 667	658 671 663 660 666 657 659 659 661 664 671	
Minimu Maximu Minim	f Sampling m Hardness m Hardness um Speed		662 668 659 656 655 661 668 661 668 660 660 657	662 662 663 657 664 660 657 657 664 660 657 657 657 657 657 657 657 657 657 657 657 657 657 657 659	Uniform Bat 665 671 659 658 656 667 659 660 668 661 656 660	Individu ach no. A 662 666 659 659 670 661 662 660 661 660 665	al weight 671 668 663 660 668 664 661 661 661 660 660 660 660 662	of 30 table	664 657 661 662 663 661 662 658 659 660 658 663	660 660 662 664 670 661 662 664 662 664 662 664 662 664 662 664	660.2 671 668 666 661 666 660 660 660 661 664 667 660	658 671 663 660 666 657 659 659 661 664 671	
Minimu Maximu Minim Maxim	f Sampling m Hardness m Hardness um Speed		662 668 659 656 655 661 668 661 666 660 657 662 664 665	662 662 663 657 664 660 657 664 660 657 664 660 657 664 660 659 664 661 665	Uniform Bat 665 671 659 658 656 667 659 660 668 660 668 661 656 660 662 659 659	Individu tch no. A 662 666 659 659 670 661 662 660 661 660 665 661 665 661 663 663	al weight 671 668 663 660 668 664 661 660 660 660 660 660 660 660	of 30 table 671 664 664 664 666 668 664 665 662 665 661 665 665 663	664 657 661 662 663 661 662 658 659 660 658 663 663 663 663 663 663 663 662	660 660 662 664 670 661 662 664 662 664 662 664 662 664 662 664 662 662 658	660.2 671 668 666 661 666 660 660 661 664 667 660 661 659 662	658 671 663 660 666 657 659 669 661 664 671 664 661	
Minimur Maximur Minim Maxim Initial	f Sampling m Hardness m Hardness um Speed um Speed	· · · · · · · · · · · · · · · · · · ·	662 668 659 656 655 661 668 661 666 660 657 662 664 665 658	662 662 663 657 664 660 657 657 664 660 657 664 660 659 664 661 665 656	Uniform Bat 665 671 659 658 656 667 659 660 668 661 656 660 662 659 659 659 659 670	Individu tch no. A 662 666 659 659 670 661 662 660 661 660 665 661 663 663 663 663 667	al weight 671 668 663 660 668 664 661 660 660 660 660 660 660 662 664 659 662 663	of 30 table 671 664 664 664 666 668 664 665 662 658 661 665 665 665 665 663 667	664 657 661 662 663 661 662 663 658 659 660 658 663 663 663 663 662 663 662 668	660 660 662 664 670 661 662 664 662 664 662 664 662 664 662 664 662 663 664 662 658 661 660	660.2 671 668 666 661 666 660 660 661 664 667 660 661 659 662 664	658 671 663 660 657 659 661 664 671 664 661 665 665	
Minimu Maximu Minim Maxim	f Sampling m Hardness m Hardness um Speed		662 668 659 656 656 661 668 661 666 660 657 662 664 665 658 659	662 662 663 657 664 660 657 664 660 657 664 660 657 664 660 659 664 661 665 656	Uniform Bat 665 671 659 658 656 667 659 660 668 661 656 660 662 659 659 670 663	Individu tch no. A 662 666 659 659 670 661 662 660 661 660 665 661 663 663 663 663 663	al weight 671 668 663 660 668 664 661 660 660 660 660 660 660 662 664 659 662 663 663	of 30 table 671 664 664 664 666 668 664 657 662 658 661 665 661 659 665 663 667 664	664 657 661 662 663 661 662 658 659 660 663 663 663 663 663 663 663 662 663 662 668 661	660 660 662 664 670 661 662 664 662 664 662 664 662 664 662 664 662 663 661 661 660 668	660.2 671 668 666 666 666 660 660 661 664 667 660 661 659 662 664 662 664 660	658 671 663 660 659 659 661 664 671 664 661 665 666 664	
Minimur Maximur Minim Maxim Initial	f Sampling m Hardness m Hardness um Speed um Speed At Optin		662 668 659 660 659 661 668 661 666 660 657 662 664 665 658 659 663	662 662 663 657 664 660 657 664 660 657 664 660 657 664 660 657 664 660 659 664 665 656 659 659	Uniform Bat 665 671 659 658 656 667 659 660 668 661 656 660 662 659 659 670 663 662	Individu tch no. A 662 666 659 659 670 661 662 660 661 660 665 661 663 663 663 663 663 663 663 665 662	al weight 671 668 663 660 668 664 661 661 660 660 660 660 660 662 664 659 662 663 663 660	of 30 table 671 664 664 664 666 668 664 657 662 658 661 665 663 661 665 663 664	664 657 661 662 663 661 662 658 659 660 663 660 663 660 663 660 663 662 663 662 663 662 668 661 664	660 660 662 664 670 661 662 664 662 664 662 664 662 664 662 663 661 661 661 660 668 660	660.2 671 668 666 666 666 660 660 661 664 667 660 661 6659 662 662 664 660 668	658 671 663 660 657 659 659 661 664 664 661 665 666 664 661	
Minimu Maximu Minim Maxim Initial Middle	f Sampling m Hardness m Hardness um Speed um Speed At Optin		662 668 659 660 659 661 668 661 666 660 657 662 664 665 658 659 663 671	662 662 663 657 664 660 657 664 660 657 664 660 657 664 660 657 664 660 659 664 665 656 655 659 661	Uniform Bat 665 671 659 658 656 667 659 660 668 661 656 660 662 659 670 663 662 659 670 663 662 659 670 663 662 659 670 663 662 659 659 670 663 662 659 659 659 659 659 659 659 659 659 659	Individu tch no. A 662 666 659 659 670 661 662 660 661 663 663 663 663 663 663 663 663 663	al weight 671 668 663 660 668 664 661 661 660 660 660 660 662 664 659 662 663 663 663 660 665	of 30 table 671 664 664 664 666 668 664 657 662 658 661 665 663 6661 665 663 667 665 663 667 664 658	664 657 661 662 663 661 662 658 659 660 663 660 663 660 663 660 663 660 663 664 664 666	660 660 662 664 670 661 662 664 662 664 662 664 662 664 662 664 662 663 661 660 668 660 671	660.2 671 668 666 666 666 660 660 661 664 667 660 661 659 662 664 660 663 669 663 659	658 671 663 660 666 657 659 661 664 661 664 665 666 664 661 662	
Minimur Maximur Minim Maxim Initial	f Sampling m Hardness m Hardness um Speed um Speed At Optin		662 668 659 660 659 661 668 661 666 660 657 662 664 665 658 659 663	662 662 663 657 664 660 657 664 660 657 664 660 657 664 660 657 664 660 659 664 665 656 659 659	Uniform Bat 665 671 659 658 656 667 659 660 668 661 656 660 662 659 659 670 663 662	Individu tch no. A 662 666 659 659 670 661 662 660 661 660 665 661 663 663 663 663 663 663 663 665 662	al weight 671 668 663 660 668 664 661 661 660 660 660 660 660 662 664 659 662 663 663 660	of 30 table 671 664 664 664 666 668 664 657 662 658 661 665 663 661 665 663 664	664 657 661 662 663 661 662 658 659 660 663 660 663 660 663 660 663 662 663 662 663 662 668 661 664	660 660 662 664 670 661 662 664 662 664 662 664 662 664 662 663 661 661 661 660 668 660	660.2 671 668 666 666 666 660 660 661 664 667 660 661 665 662 662 664 660 668	658 671 663 660 657 659 659 661 664 665 666 664 661 665 666 664 661	

www.ijapbc.com

IJAPBC – Vol. 2(3), Jul-Sep, 2013

ISSN: 2277 - 4688

				1			- 1		r	1		
		656	654	657	661	658	657	660	659	652	665	
Minimu	m Hardness	660	652	665	652	666	652	666	658	665	658	
		657	659	663	660	666	661	663	657	661	65	
		662	660	662	657	661	662	667	664	658	66	
Maximu	m Hardness	660	662	659	656	657	661	664	657	659	66	
		659	662	663	663	657	661	660	662	657	662	
		656	667	658	653	662	661	669	658	656	660	
Minim	um Speed	661	653	667	664	656	666	663	662	661	658	
		660	663	663	658	664	659	653	661	660	662	
		665	661	659	656	664	667	663	664	656	663	
Maxim	um Speed	663	661	657	655	660	655	666	660	655	657	
	•	656	664	656	657	663	667	661	661	661	659	
		660	668	657	665	661	662	660	657	661	659	
Initial		656	661	660	662	660	662	664	659	663	66	
		661	658	667	666	665	664	667	664	661	66	
	At Onting	660	660	656	660	660	667	662	660	661	67	
Middle	At Optim	.im 659	658	660	666	661	666	665	664	662	66	
	Speed	667	664	664	664	663	666	660	660	664	664	
		665	658	666	652	665	660	659	660	657	659	
End		658	657	665	663	668	656	654	657	658	65	
	Lind		657	661	657	668	659	663	664	661	658	
	•	·	•	Ba	tch no. C						· · · ·	
		665	660	657	668	661	660	666	666	664	65	
Minimu	m Hardness	659	665	657	659	658	652	665	658	666	65	
		657	654	656	657	665	663	659	660	663	65	
		660	660	660	663	660	660	666	666	664	66	
Maximu	m Hardness	666	661	660	662	663	665	666	665	661	66	
		657	659	666	658	659	660	661	662	664	66	
		661	661	660	665	668	665	661	664	656	654	
Minim	um Speed	667	659	662	660	666	661	665	662	657	66	
	1	664	661	668	660	662	660	660	658	661	65	
		658	671	664	670	665	657	658	660	661	66	
Maxim	um Speed	659	657	660	662	663	655	666	671	664	65	
		662	664	661	667	666	658	657	659	660	66	
		662	663	663	657	661	667	659	662	660	66	
Initial		656	657	660	663	657	662	667	661	662	659	
		664	657	654	663	662	658	657	661	665	66	
		661	660	656	665	667	658	663	660	658	664	
Middle	At Optim	im 659	665	664	664	658	669	663	661	653	66	
muure	Speed	656	654	658	660	662	658	663	661	660	66	
		656	656	663	664	667	663	657	659	656	66	
End		663	653	659	667	660	655	661	665	661	66	
Liid		659	661	668	660	657	655	660	660	655	66	
		039	001		bility Inde		033	000	000	055	00	
	stage of Sam	oling		Batch I			Batch II			Batch III		
	linimum Har			2.26		1	2.46		1	2.53		
	laximum Har			2.61		1	4.00		1	3.91		
	Minimum Sp			4.10		1	2.62			2.92		
	Maximum Sp			3.36			2.89		1	2.92		
Initial st				4.96			3.16		1	3.29		
Middle s		At Optimum		2.92			3.09			2.85		
End sta	U	speed		2.49			2.75			2.80		
2110 500	0'				ssolution	-1	2.70		1			
Batch			At Ma		ardness - 1	Dissolutio	on %			Mean	(%)	
Α		91	96	93		92	94	9	5	94	1	
В		89	98	- 99		100	89		6	95		
С		96	98	97		98	94	9	6	97	7	
~			1		6 Assay		D : 1 =			n / • ~		
	tage of Samp	0		Batch A	<u> </u>		Batch B			Batch C		
	Minimum Sp			98.1			97.0			97.6		
	Maximum Sp	eea		98.9			98.8			98.0		
Initial st		At Optimum		99.1		_	97.2			97.9		
Middle s	0	speed	L	98.8			98.0			98.6		
End sta	ge	1.1.1		98.8			99.2			98.3		

Table 6: Coating Parameters										
COATING PARA	METERS	OBSERVATION								
Parameters	Specified	Batch No	o: A	Batch N	o: B	Batch No: C				
r ar ameter s	specifieu	Lot I	Lot II	Lot I	Lot II	Lot I	Lot II			
Pan load (36")	Approx. 37.125 kg per lot	35.72	35.72	35.92	35.93	36.03	36.02			
Inlet Temperature	$65 \pm 5^{\circ}C$	68	68	68	68	68	68			
Exhaust Temperature	$50 \pm 5^{\circ}C$	50	50	50	50	50	50			
Pan speed	1 - 10 RPM	03	03	03	03	03	03			
Peristaltic pump speed	3 – 20 RPM	08	08	08	08	08	08			
Spray rate	12± 5g/gun/min	14	14	14	14	14	14			
Bed temperature	$45 \pm 5^{\circ}C$	48	48	48	48	48	48			
No of spray guns	3	3	3	3	3	3	3			
Distance Between gun and Tablet Bed	22 ± 3 cm	20	20	20	20	20	20			
Diameter of the nozzle of spray gun	1.2 mm	1.2	1.2	1.2	1.2	1.2	1.2			
Atomising Pressure	$3 \pm 1 \text{ kg/cm}^2$	3	3	3	3	3	3			

Table 7: INDIVIDUAL INPROCESS TEST DATA DURING COATING

S. No.	Parameter	Specification
1	Appearance	White to off-white, oval shaped, biconvex film coated tablets engraved with "ML 72" on one side and plain on other side.
2	Weight of 20 tablets	13.464 g ± 2.0% (13.19 g - 13.73 g)
3	Average weight	673.2 mg <u>+</u> 2.0% (659.74 mg - 686.66 mg)
4	Thickness	5.60 mm ± 0.20 mm (5.40 mm - 5.80 mm)
5	Disintegration time (With Disc)	NMT 20 Minutes
6	Uniformity of Weight	673.2 mg ± 5% (639.54 mg - 706.86 mg)
7	Length**	$18.10 \text{ mm} \pm 0.20 \text{ mm}$
8	Width**	$8.60 \text{ mm} \pm 0.20 \text{ mm}$

Table 8: Result at coating stage

			Observati	on of	appearan	ce			
			AI	opear	ance				
Stage of Sai	npling		Bato	ch no	. A	Batc	n no. B	Batch	no. C
Coating (I	Co	mplie	es	Cor	Complies		plies		
Coating (L	ot II)			mplie		Cor	nplies	Complies	
			Result	s of T	hickness				
Stages of Sampling			Th	ickne	ess (mm)			Min	Max
			Ba	tch N	No. A				
Coating (Lot I)	5.52	5.61	5.6	3	5.65	5.66	5.64	5.52	5.66
Coating (Lot II)	5.60	5.63	5.5	9	5.65	5.62	5.51	5.51	5.65
			Ba	tch N	No. B				
Coating (Lot I)	5.52	5.61	5.6	3	5.64	5.58	5.59	5.52	5.64
Coating (Lot II)	5.60	5.61	5.6	5	5.58	5.54	5.56	5.54	5.65
			Ba	tch N	No. C				
Coating (Lot I)	5.60	5.64	5.5	8	5.62	5.56	5.59	5.54	5.64
Coating (Lot II)	5.57	5.62	5.6	3	5.62	5.65	5.60	5.57	5.65
			Results of l	Leng	th and Wie	lth			
Stage of Sampling	Parame	ter	Batch no. A			Batch	no. B	Batch	no. C
			Min		Max	Min	Max	Min	Max
Coating (Lot I)	Length	1	18.08		18.12	18.09	18.13	18.10	18.13
	Width	l	8.58		8.62	8.58	8.62	8.57	8.64
Coating (Lot II)	Length	1	18.09		18.13	18.09	18.13	18.08	18.13
	Width	l	8.55	8.55 8.62		8.59	8.64	8.58	8.63
	Results of 1	Disinteg	ration Time	e (mii	nutes, dete	rmined at 3	$7^{\circ}C \pm 2^{\circ}C$		
Stage of Sa	Ba	Batch no. A		Batch no. B		Batch no. C			
Coating (12 r	12 min 56 sec		13 min 01 sec		13 min 09 sec			
Coating (I	Coating (Lot II)				3 sec	12 i	n 59 sec	13 min 02 sec	
			Results of	Grou	1p Weight	(g)			
Stage of Sa	Stage of Sampling				Batch no. A		h no. B	Batch no. C	
Coating (1				13.53	7	1.	3.491	13.466	

IJAPBC – Vol. 2(3), Jul-Sep, 2013

Coating (Lot II)					13.472			13	.486		13.480		
Results of Average Weight (mg)													
	Stage of Sampling							,	h no. B		Batch no. C		
Coating (Lot I)				676.7	1		674.5			673.3			
	Coating (Lot II)				673.6			674.3			674.0)	
Results of Uniformity of Weight													
Stage Of Sampling Individual weight of 20 tablets (mg)													
Batch no. A													
Coating (L	ot I) 67	'3	671	681	680	67	5	669	678	683	676	681	
	67	7	678	677	673	68	0	681	681	673	675	672	
Coating (Le	ot II) 67	'3	676	674	673	67	3	672	672	678	677	677	
	67	2	675	673	671	67	2	669	674	675	670	676	
					Batch r	o. B							
Coating (L		-	672	671	671	67	-	679	673	669	669	672	
	67	7	676	674	676	67	4	679	681	674	677	677	
Coating (Le	ot II) 67	/1	670	668	673	67	5	673	674	684	674	668	
	60	59	679	672	679	67	7	678	674	677	676	675	
					Batch n	o. C							
Coating (L			675	669	674	67	6	676	677	669	673	670	
	67	4	669	677	670	67	6	674	671	674	674	673	
Coating (Le			674	672	676	66	9	672	675	674	667	677	
	67	0	679	681	675	67	-	679	670	671	678	672	
				Res	ult % We	ight Gai	in						
Sr. No.	I	Batch A	1			Bate	h B				atch C		
	Lot I		Lot		Lot I			Lot II	Lot I			Lot II	
1	1.93		2.2	-	1.63			1.64	2.07			2.96	
2	1.19		2.9			1.79		0.30	2.07			2.67	
3	3.38		0.5	-	1.34			1.65		1.35			
4	3.09		0.8	-		2.09		1.19	1.34		1.78		
5	2.22		1.4	-		2.51		2.07	1.18		0.30		
6	0.75		0.7		2.50			1.63	1.63		1.34		
				R	esults of l								
Stages of	Sampling					Dissolut	ion (%	6)				Mean	
					Batch N								
	Coating (Lot I) 97			97 100			98	100	-	9	98		
Coating	Coating (Lot II) 95		96	96 99			99	98		96 97			
	(T)		~~ _		Batch N			100					
Coating (Lot I) 100			100 100				97 99		2				
Coating	(Lot II)	9	9	99	99 96			99 99 9			98 98		
	(T) T	-	_	107	Batch N		_		105			101	
Coating			97	102		104		101	103		00	101	
Coating (Lot II) 100		10	00	103		98		101	104	1	02	101	

Table 9: Bulk packing and Leak test

Batch	Frequency	Counting machine speed	Tablet counting	Leak test
	Initial	15	30	Pass
Ι	Middle	25	30	Pass
	End	20	30	Pass
п	Initial	15	30	Pass
	Middle	25	30	Pass
	End	20	30	Pass
III	Initial	15	30	Pass
	Middle	25	30	Pass
	End	20	30	Pass

	Table 10: Finished product analysis report										
S. No	Tests	Specification	Batch no.(Results)								
110			Α	В	С						
1.0	Description	White to off-white, oval shaped, biconvex, film coated tablets engraved with "ML 72" on one side and plain on the other side.	Complies	Complies	Complies						
2.0	Identification A. By HPLC	The retention time of the principal peak in the chromatogram of sample preparation should correspond to that of the principal peak in the chromatogram of standard preparation, as	Complies	Complies	Complies						
	B. By IR	obtained in the "Assay". Infrared absorption spectrum of the residue should exhibit maxim at the same wavelengths as that of the Famciclovir reference/working standard.									
3.0	Average weight (mg)	673.2 ± 2.0 %	676.0	674.6	673.1						
4.0	Disintegration Time (minutes; determined at 37°C ±2°C)	Not more than 20	10 min 50 sec	11 min 10 sec	14 min 02 sec						
5.0	Water (By KF, % w/w)	Not more than 2.5	1.48	0.75	0.73						
6.0	Dissolution (in 0.1 N Hydrochloric acid; 900 mL; paddle, 50 rpm; 30 min by HPLC, % amount of labeled)	Not less than 80 (Q)	100 101 100 101 100 101	96 98 102 96 98 100	97 101 103 100 102 99						
7.0	Uniformity of Dosage Units (By Weight variation, as Famciclovir [C ₁₄ H ₁₉ N ₅ O ₄] Acceptance value	Less than or equal to 15.0	1.0	1.0	1.1						
8.0	Related substances (By HPLC, %w/w) Monohydroxy impurity Any other individual impurity Total impurities	Not more than 0.15 Not more than 0.10	0.063 Below	0.042 Below	0.038 Below Limit						
	L. L	Not more than 0.70	Limit 0.063	Limit 0.042	0.038						
9.0	Assay (By HPLC) Famciclovir [C14H19N5O4] - mg / tablet - % label claim	475.0 to 525.0 95.0 to 105.0	493.60 98.7	496.45 99.3	497.99 99.6						
10.0	Residual Solvents	Should comply with option 2 of USP residual solvents <467>	Complies	Complies	Complies						
11.0	Polymorphism (By XRD) A. Identification of polymorphic form I and form II	Diffractogram pattern should exhibit the characteristic peaks of Form-I at 20 values of 15.5 and 15.9 \pm 0.2° and the characteristics peaks of Form-II at 20 values of 16.2 and 16.4 \pm	Form I at 20 value of 15.5 and 15.9 Form II at 2	Form I at 20 value of 15.5 and 15.9 Form II at	Form I at 2θ value of 15.5 and 15.9 Form II at 2 θ value of 16.1						
	B. Content of monohydrate form (%)	peaks of Form-11 at 20 values of 16.2 and 16.4 \pm 0.2°. Not more than 5	θ value of 16.1 and 16.4	Form 11 at 2θ value of 16.1 and 16.3	and 16.4						
			Below Limit	Below Limit	Below Limit						

REFERENCES

- 1. Guidance for Industry. Process Validation: General Principles and Practices. January 2011, http://www.fda.gov/Drugs/GuidanceComp lianceRegulatoryInformation/Guidances/d efault.htm.
- 2. Nash RA Wachter AH. and Pharmaceutical Process Validation; 3rd Edn; Marcel Dekker publication, New York, 2003, pp 17.
- 3. Garg R, Aggarwal S and Gupta G.D, "Guidelines on General Principles of Validation: Solid, Liquid and Sterile

dosage forms", Pharmainfo, October 2008, pp. 15-44.

- 4. Kumar S and Bharat P, "Pharmaceutical Process Validation: A CGMP Concept", Novel science International Journal of Pharmaceutical Science, February 2013, pp. 13-20.
- 5. Nash RA. and Wachter AH. Pharmaceutical Process Validation; 3rd Edn; Marcel Dekker publication, New York, 2003, pp 796-800.
- 6. Dashora K, Singh D and Saraf S, "Validation – The Essential Quality Assurance Tool for Pharma Industries", Pharmainfo, September 2005, pp. 8-18.
- Venkata R.T, Kotta K.K, Leela M, Rao K and Sasaikanth K, "Process validation of Citalopram Hydrobromide Tablets", International Journal of Research in Pharmaceutical and Bioscience, December 2010, pp. 109-123.
- 8. Phviral, "Process Validation: An Essential Process In Pharmaceutical Industry", Pharmainfo, January 2010, pp.16-21.
- 9. Chitlange S.S, Pawar A.S, Pawar H.I, Bhujbal S.S and Kulkarni A.A, "Validation", Pharmainfo, May 2006, pp. 9-19.
- 10. Nash RA. and Wachter AH. Pharmaceutical Process Validation; 3rd Edn; Marcel Dekker publication, New York, 2003, pp 34-39, 47-122.
- 11. Nash RA. and Wachter AH. Pharmaceutical Process Validation; 3rd Edn; Marcel Dekker publication, New York, 2003, pp 844.
- 12. Jatto E and Okhamafe A.O, "An Overview of Pharmaceutical Validation and Process Controls in Drug Development", Tropical Journal of Pharmaceutical Research, December 2002, pp.115-122.
- Lachman L., Liberman HA., and Kanig JL. The Theory and Practice of Industrial Pharmacy; 3rd Edn; 600 Washington Square, Philadelphia, USA, 1990, pp 330-380.
- 14. Drug Bank: "Famciclovir (DB00426)", February 2012, www.drugbank.ca/drugs/DB00426
- 15. Famciclovir: "An overview Wikipedia, the free encyclopedia", November 2012, www.wikipedia.org/wiki/Famciclovir
- 16. "Famciclovir, famvir" MedicineNet, November 2012, www.medicinenet.com/script/main/article kev=749
- 17. RxList The Internet Drug Index: :Famvir (Famciclovir)", February 2012. www.rxlist.com/famvir-drug.html

- MedicinePlus "Health Information from the National Library of Medicine", December 2012, www.nlm.nih.gov/medlineplus/druginfo/ meds/a694038.html
- 19. World Health Organization, Trends in Drug Patenting – Case Studies. Retrieved on 10th November 2012, www.who.int/medicinedocs/en/d/Js4915e/ 2.3.html
- 20. CIPO: "Canadian Intellactual Property Office", January 2013, www.cipo.ic.gc.ca
- 21. USPTO: "United States Patent Trade Office", November 2012, www.uspto.gov
- 22. Drug Bank: "Hydroxy Propyl Cellulose (DB00840)", October 2012, www.drugbank.ca/drugs/DB00840
- 23. Novartis: "An innovative healthcare products", September 2012, www.novartis.com/products/pharmaceutic als-f.html
- 24. Drugs Update "Solution for Healthcare Professionals, India", January 2013, www.drugsupdate.com/brand
- 25. In-house specifications, Macleods Pharmaceuticals, Daman.
- 26. Jena S, Arjun G, Kumar D.S, Vinod K.R and Banji D, "Industrial Process Validation Of Solid Dosage Forms – An Overview", International Journal of Pharmaceutical Science Review and Research, September – October 2010, pp. 145.
- 27. Rathore A.S, Noferi J.F, Arling E.R, Sofer G, Watler P and O'Leary R, "Process Validation: How Much to Do and When to Do It", BioPharm, October 2002, pp.18-28.
- Bhattacharjee D, Dr. Maity S and Dr. Manna A, "Industrial Application of Process Validation in the Development & Scale-Up of Pharmaceutical Tablet Dosage Form of a Low Dose Containing Drug and a High Dose Containing Drug", Journal of Pharmaceutical Science and Technology, February 2011, pp.570-574.
- 29. Fetterolf D.M, "Developing a Sound Process Validation Strategy", International BioPharm, The Science & Business of Biopharm, December 2007, pp.20-26.
- Chow S, "Pharmaceutical validation and process controls in drug development", Drug Information Journal, August 1997 pp. 1195–1201
- Pandita R, Rana A.C, Seth N and Balal R "Process Validation of Dry Powder Inhalers", International Research Journal of Pharmacy, December 2011, pp. 114-116.

- Sindhurnag N, Gouthami B and Madhuri L, "The concept of process validation in tablet manufacturing", Journal of Pharmacy Research, January 2012, pp.1264-1267.
- Gupta S, Saini S, Singh G and Rana A.C, "Industrial Process Validation of Tablet dosage form", International Research Journal of Pharmacy, March 2012, pp. 48-54.
- 34. Pearn W.L and Chen K.S, "Making Decision in Assessing Process Capability Index C_{pk} ", Quality and Reliability Engineering International, March 1999, pp.321-326.
- 35. Paruchuri R, Trivedi S and Pavuluri G, "Process Validation of Finasteride Tablet", International Journal of Pharmaceutical Chemical and Biological Sciences, March 2012, pp. 11-28.
- 36. Thanduvai R and Rao B.S, "Process Validation of Pantoprazole 40 mg Tablets", The Pharma Innovation, May 2012, pp. 53-73.
- 37. Wazade M.B and Walde S.R, "An overview of Pharmaceutical Process Validation and Process Control Variables of Tablets manufacturing Process in Industry", International Journal of Pharmaceutical Science and Research, August 2012, pp. 3007-3022.
- Thakre S, Bhople A, Deshpande S and Patil S, "Optimization and Validation of Process for Formulation and Coating of Ranitidine Hydrochloride Tablet", World Journal of Pharmaceutical Research, January 2013, pp. 382-409.
- 39. Nikam U.A and Jadhav A.V, "An Overview of Pharmaceutical Process

Validation of Solid Dosage Form", Current Pharma Research, January 2013, pp. 824-835.

- 40. Rohokale B.S and Jadhav V.M, "Studies in Process Development and Nimesulide 100 mg Tablet Dosage Formulation", December 2010, pp. 2441-2444.
- 41. Maulanki J.N and Sen R, "Process Validation of Satolol Hydrochloride Tablet", International Journal of Pharmaceutical Sciences and Research, June 2012, pp. 2310-2316.
- 42. Kumar S and Chakraborthy G.S, "Process Validation of Azifast 500 mg Tablet", Journal of Advances in Pharmacy and Healthcare Research, January 2011, pp. 2-9.
- 43. Sravani S.K and Meka A.K, "Formulation and Process Validation of Clopidogrel Bisulfate 300 mg Tablet", International Journal of Pharmaceutical Quality Assurance, December 2011, pp. 1-14.
- 44. Mannuar V.S and Shravankumar B, "RP-HPLC Method development and Validation for Estimation of Famciclovir in Tablet dosage form", International Journal of Pharmacy and Pharmaceutical Sciences, June 2011, pp. 198-200.
- 45. "Guidance for Industry Powder Blends and Finished Dosage Units – Stratified In-Process Dosage Unit Sampling And Assessment," Draft Guidance, October 2003, www.fda.gov/cder/guidance/index.html
- 46. UK Orange Guide. Guide to Good Pharmaceutical Manufacturing Practices; United Kingdom, 1983;345-359.