ABSTRACT
The antibacterial activity of the alcoholic and hydroalcoholic extracts of the roots of Prosopis cineraria (Linn.) Druce, was evaluated by the agar well diffusion method. The alcoholic extract was prepared by continuous hot percolation method with ethanol and hydroalcoholic extract was prepared by maceration. The presence of flavonoids and tannins were detected in the preliminary phytochemical tests. Moderate antibacterial activity was observed in the extracts (500 μg/ml) against some pathogenic microorganisms when compared with the standard Ampicillin (10 μg/ml).

KEY WORDS: Antibacterial activity, ampicillin, agar diffusion method and Prosopis cineraria.

INTRODUCTION
Plants are considered as vital sources of medicinal agents for treating the dreadful diseases and play an important role in the basic health needs of the people in the developing countries. The active principles present in plants have medicinal value and produce a particular biological action on the human body. The use of medicinal plants play a vital role in covering the basic health needs in developing countries and these plants may offer a new source of antibacterial, antifungal and antiviral agents with significant activity against infective microorganisms. There are numerous examples of antimicrobials of plant origin that have an enormous therapeutic potential. The medicinal plants play a major role in developing countries to cover their basic health needs and these medicinal plants can be used as a source of antifungal, antiviral and antibacterial constituents which are active against different microorganisms and which are notorious to human health. Many powerful drugs are extracted from different parts of biologically active plants such as flowers, stem, leaf, bark, roots and seeds. Various chemical constituents of the plants like terpenoids, flavonoids and tannins have antimicrobial activity against a wide range of microorganisms. Prosopis cineraria (Mimosaceae) is a small to moderate sized tree found in various parts of India such as Rajasthan, Gujarat, Haryana, Uttar Pradesh, Andhra Pradesh and Tamil Nadu1. This plant is used in pregnancy as a safeguard against miscarriage2-4. The smoke of the leaves is good for eye troubles. It is also known to possess anthelmintic, antibacterial, antifungal, antiviral, antitumour and several other pharmacological properties5. It is also reported that aqueous extract of bark and leaves applied externally to treat skin disease6 disinfects wounds and promotes healing. In our present work, we extended the study to screen the antimicrobial activity of alcoholic and hydroalcoholic extracts of the roots of Prosopis cineraria against four different bacterial strains.

MATERIALS AND METHODS
Plant material collection:
The roots of the plant Prosopis cineraria was collected from Gajwel village, Medak district, Telangana during October 2014, identified by Senior

Phytochemical Screening and Antimicrobial Activity of roots of Prosopis cineraria
V. Kuchana1, S. Sampathi2, S. Pamu 3, M. Poosa4.
1R.G.R. Siddhanthi College of Pharmacy, Secunderabad, Andhra Pradesh, India-500003.
2National Institute of Pharmaceutical Education and Research, Hyderabad, India-500037.
3Shadan Women’s College of Pharmacy, Kharababad, Hyderabad, India-500004.
4Sultan-ul-Uloom College of Pharmacy, Banjara Hills, Hyderabad, India-500034.
Plant Taxonomist and authenticated at the Herbarium of the Botany Department, Osmania University, Hyderabad, Telangana. The roots were air dried separately for one month and the dried material was coarsely powdered.

Preparation of the extracts:
About 150 g of the coarse powder was extracted with ethanol by continuous hot percolation method (Soxhlet apparatus). The marc was then further extracted with hydro alcoholic mixture using maceration. Both alcoholic and hydro alcoholic extracts were then evaporated under reduced pressure and were stored in refrigerator till use.

Phytochemical investigation:
The alcoholic and hydroalcoholic extracts of the root of *Prosopis cineraria* were subjected to preliminary phytochemical screening to identify the constituents present in them. A wide variety of natural constituents like alkaloids, glycosides, tannins, essential oils and other secondary metabolites like sterols, phenolic compounds, tannins and flavonoids were tested using standard procedures.

Bacterial strains:
Four bacterial strains viz. *Escherichia coli* [Gram negative], *Pseudomonas aeruginosa* [Gram negative], *Staphylococcus aureus* [Gram positive] and *Bacillus subtilis* [Gram positive] were used in this study. Microorganisms were procured from Microbiology Department, Osmania University, Hyderabad. The bacteriostatic property of the extracts was tested by agar well diffusion method.

Preparation of Antibacterial Solution:
The extracts were dissolved in dimethyl sulfoxide (DMSO) and were taken at concentration of 500 μg/ml for testing antibacterial activity using ampicillin (10μg/ml) as a standard with proper drug controls.

EXPERIMENTAL PROCEDURE

Agar well diffusion method:
The microorganisms were inoculated on the agar medium by spread plate technique. Four wells were bored in each plate and 100 μl of the extract samples were added in the well plate. The inoculated plates were incubated at 37°C for 24 hr. Antimicrobial activity was evaluated by measuring the zone of inhibition against the test organisms. All the assays were carried out in triplicate and the results recorded as mean ± SEM of the three experiments.

RESULTS AND DISCUSSION
The alcoholic and hydroalcoholic extracts of the roots of *Prosopis cineraria* were tested against *Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus* and *Bacillus subtilis* (gram positive). The zones of inhibition were recorded. Both alcoholic and hydroalcoholic extracts of the roots of *Prosopis cineraria* exhibited moderate antibacterial activity with all the tested strains at (500μg/ml) concentration when compared with the standard ampicillin (10μg/ml). The results of

![Fig: 1 ZONE OF INHIBITION OF E.COLI AGAINST AMPICILLIN, HYDROALCOHOLIC AND ALCOHOLIC EXTRACT OF ROOTS OF PROSOPIS CINERARIA](image-url)
antibacterial activity of alcoholic and hydroalcoholic extracts of the roots of Prosopis cineraria against four different bacterial strains in terms of zone of inhibition were shown in table-2 and its graphical representation in fig-2

Earlier the antimicrobial properties were reported by researchers from stem bark\(^1\) and leaflets\(^2\) of Prosopis cineraria and even from root, stem, bark, pods of the different species of Prosopis i.e. Prosopis julifera\(^3\), Prosopis Africana\(^4\) and different species of Mimosaceae plants\(^5\).

The obtained activity may be due to the presence of flavonoids and tannins (presence is confirmed by the preliminary phytochemical studies). Further studies are under progress to characterize the active principles present in the extracts.

CONCLUSION

Plants have become a valuable source of medicinal agents which are used for the treatment of various diseases. Much attention has been paid towards plant based products which are extracted and isolated from plants. Natural products are taken much important as antimicrobial agents as they have fewer side effects when compared to commercially available products. There is an urgent need to identify newer chemical entities that are effective against resistant pathogens. In our present study the root extract of Prosopis cineraria exhibited antimicrobial activity against gram positive bacteria.

Table 1 : Preliminary Phytochemical Screening of Extracts of roots of Prosopis cineraria (L.)Druce

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Name of the test</th>
<th>AE</th>
<th>HAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Carbohydrates</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Proteins/Aminoacids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Glycosides</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Saponins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Phenolics/Tannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Steroids</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ Present ; - Absent
AE - Alcoholic Extract
HAE - Hydroalcoholic Extract

Table-2 : Antimicrobial activity of the root extracts of Prosopis cineraria

<table>
<thead>
<tr>
<th>S no</th>
<th>Micro organism</th>
<th>Concentration of extract µg/ml</th>
<th>Zone of inhibition (mm)</th>
<th>Standard Ampicillin 10 µg/ml (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alcoholic extract</td>
<td>Hydroalcoholic extract</td>
</tr>
<tr>
<td>1</td>
<td>Escherichia coli</td>
<td>500</td>
<td>16±0.12</td>
<td>14±0.10</td>
</tr>
<tr>
<td>2</td>
<td>Pseudomonas aeruginosa</td>
<td>500</td>
<td>12±0.24</td>
<td>10±0.23</td>
</tr>
<tr>
<td>3</td>
<td>Staphylococcus aureus</td>
<td>500</td>
<td>18±0.41</td>
<td>20±0.20</td>
</tr>
<tr>
<td>4</td>
<td>Bacillus subtilis</td>
<td>500</td>
<td>21±0.31</td>
<td>17±0.12</td>
</tr>
</tbody>
</table>
Antimicrobial activity of alcoholic and hydroalcoholic extracts of roots of* Prosopis cineraria* (zone of inhibition in mm)

<table>
<thead>
<tr>
<th></th>
<th>Alcohol extract 500 µg/ml</th>
<th>Hydroalcoholic extract 500 µg/ml</th>
<th>Standard Ampicillin 10 µg/ml (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>16</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>12</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>18</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>21</td>
<td>17</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure -2 Antimicrobial activity of the root extracts of* Prosopis cineraria*

REFERENCES

